

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

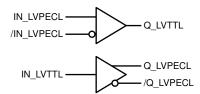
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

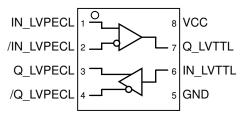
3V LVTTL-TO-DIFFERENTIAL LVPECL AND DIFFERENTIAL LVPECL-TO-LVTTL TRANSLATOR

Precision Edge[®] SY89328L

FEATURES


- 3.3V ±10% power supply
- Guaranteed AC parameters over temperature: f_{MAX} > 275MHz (LVTTL)
- < 2ns LVPECL-to-LVTTL propagation delay
- < 600ps LVTTL-to-LVPECL propagation delay
- Internal 75k Ω input pull-up and pull-down resistors
- Industrial temperature range: -40°C to +85°C
- Available in ultra-small 8-pin MLF[™] (2mm × 2mm) package

DESCRIPTION


The SY89328L is a differential LVPECL-to-LVTTL translator and an LVTTL-to-differential LVPECL translator in a single package. Because LVPECL (Positive ECL) levels are used, only +3.3V and ground are required. The SY89328L is functionally equivalent to the SY100EPT28L, but in an ultra-small 8-lead MLF™ package that features a 70% smaller footprint. This ultra-small package and the dual translation design of the SY89328L make it ideal for applications that are sending and receiving signals across a backplane.

BLOCK DIAGRAM

Precision Edge is a registered trademark of Micrel, Inc. MicroLeadFrame and MLF are trademarks of Amkor Technology, Inc.

PACKAGE/ORDERING INFORMATION

8-Pin MLF™ Ultra-Small Outline (2mm × 2mm)

Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89328LMITR	MLF-8	Industrial	HEP28	Sn-Pb
SY89328LMGTR	MLF-8	Industrial	HEP28 with Pb-Free bar-line indicator	Pb-Free NiPdAu

PIN DESCRIPTION

Pin Number	Pin Name	Туре	Pin Function
1, 2	IN_LVPECL, /IN_LVPECL	100k ECL Input	Differential LVPECL Input: Includes internal 75k Ω pull-down resistor on internal 75k Ω pull-up and pull-down resistors on /IN. See "Input Interface Applications" section for single-ended inputs.
7	Q_LVTTL	LVTTL Output	Single-ended LVTTL Output: Translated from LVPECL input. Q_LVTTL output will default LOW with IN_LVPECL and /IN_LVPECL inputs left open.
6	IN_LVTTL	LVTTL Input	Single-ended LVTTL Input.
3, 4	Q_LVPECL, /Q_LVPECL	100k ECL Output	Differential LVPECL Output: Translated from LVTTL input. See "Output Interface Applications" section for recommendations on terminations.
8	VCC	VCC Power	Positive Power Supply: Bypass with 0.1μF//0.01μF low ESR capacitors.
5	GND, Exposed Pad	Ground	GND and exposed pad must be tied to ground plane.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	–0.5V to +3.8V
Input Voltage (V _{IN})	0.5V to V _{CC}
LVPECL Output Current (I _{OUT})	
Continuous	50mA
Surge	100mA
Input Current	
Source or sink current on IN, /IN	±50mA
Lead Temperature (soldering, 20 sec.)+260°C
Storage Temperature (T _S)	–65°C to +150°C

Operating Ratings(Note 2)

Supply Voltage (V _{CC})	3.0V to 3.6V
Ambient Temperature (T _A)	–40°C to +85°C
Package Thermal Resistance, Note 3	
MLF TM (θ _{JA}) Still-Air	
Still-Air	93°C/W
500lfpm	87°C/W
$MLF^{\mathsf{TM}}(\Psi_{JB})$	
Junction-to-Board	60°C/W

- Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.
- Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Note 3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB.

DC ELECTRICAL CHARACTERISTICS(Note 4)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply Voltage		3.0	3.3	3.6	V
I _{CC}	Power Supply Current	Max V _{CC} , No Load		22	40	mA

LVPECL DC ELECTRICAL CHARACTERISTICS(Note 4)

 V_{CC} = +3.3V±10% and V_{FF} = 0V; R_{I} = 50 Ω to V_{CC} -2V; T_{A} = -40°C to +85°C, unless otherwise noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{OH}	Output HIGH Voltage		V _{CC} -1.145	V _{CC} -1.020	V _{CC} -0.895	V
V_{OL}	Output LOW Voltage		V _{CC} -1.945	V _{CC} -1.820	V _{CC} -1.695	V
V_{IH}	Input HIGH Voltage		V _{CC} -1.225		V _{CC} -0.880	V
V_{IL}	Input LOW Voltage		V _{CC} -1.945		V _{CC} -1.625	V
V_{CMR}	LVPECL Common Mode Range		1.2		V _{CC}	V
I _{IH}	Input HIGH Current	V _{IN} = 3.46V			150	μΑ
I _{IL}	Input LOW Current IN		0.5			μΑ
	/IN		-300			μΑ

Note 4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

LVTTL DC ELECTRICAL CHARACTERISTICS(Note 5)

 V_{CC} = +3.3V±10%; C_L = 20pF, T_A = -40°C to +85°C, unless otherwise noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{OH}	Output HIGH Voltage	I _{OH} = -3mA	2.0	_	_	V
V_{OL}	Output LOW Voltage	I _{OH} = -24mA	_	_	0.5	V
V_{IH}	Input HIGH Voltage		2.0	_	_	V
$V_{\rm IL}$	Input LOW Voltage		_	_	0.8	٧
V_{IK}	Input Clamp Voltage	I _{IK} = -18mA	_	_	-1.2	V
I _{IH}	Input HIGH Current	V _{IN} = 2.7V	_		20	μΑ
		V _{IN} = V _{CC}	_	_	100	μА
I _{IL}	Input LOW Current	V _{IN} = 0.5V		_	-0.2	μА
I _{OUT(SC)}	LVTTL Output Short-Circuit Current	V _{OUT} = 0V	-275	_	-80	mA

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = +3.3V±10%. T_A = -40°C to +85°C, unless otherwise noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Frequency LVPECL	Note 6	700	_	_	MHz
	LVTTL	Note 7	275	350	_	MHz
t _{pd}	Propagation Delay IN_LVPECL-to-Q_LVTTL	Note 7	1.5	_	2.5	ns
	IN_LVTTL-to-Q_LVPECL	Note 6	100	400	600	ps
V _{PP}	LVPECL Input Voltage Swing (Single-Ended)	Note 8	100	_	_	mV
t _{DC}	Duty Cycle		45	50	55	%
t _{Jitter}	Cycle-toCycle Jitter	Note 9			<1	ps _{RMS}
	Total Jitter	Note 10			20	ps _{PP}
t _r , t _f	LVPECL Output Rise/Fall Times (20% to 80%)	At full output swing, Note 5	200	_	500	ns
	LVTTL Output Rise/Fall Times (10% to 90%)	At full output swing, Note 6	0.5	_	1.0	ns

- Note 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- **Note 6.** $R_L = 50\Omega$ to $V_{CC} 2V$
- **Note 7.** $C_1 = 20pF$
- Note 8. V_{PP} (min) is the minimum input swing for which AC parameters are guaranteed.
- **Note 9.** Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_n T_{n-1}$, where T is the time between rising edges of the output signal.
- Note 10. Total jitter definition: with an ideal clock input of frequency ≤ f_{MAX}, no more than one output edge in 10¹² output edge will deviate by more than the specified peak-to-peak jitter value.

LVPECL INPUT INTERFACE APPLICATIONS

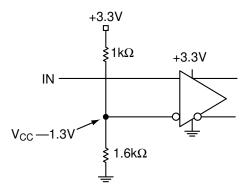
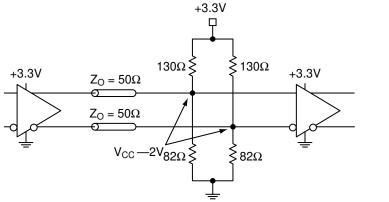




Figure 1. Single-Ended Input (Terminating unused input)

LVPECL OUTPUT INTERFACE APPLICATIONS

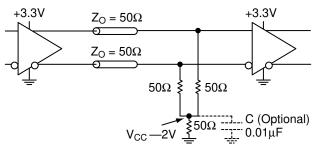


Figure 2b. Three Resistor "Y Termination"

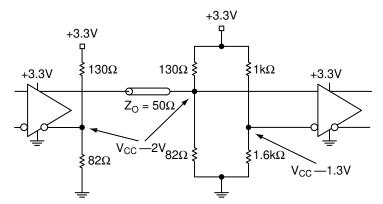
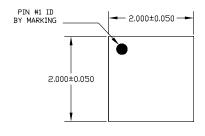
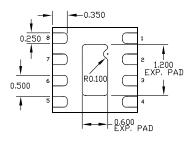
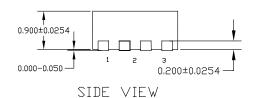
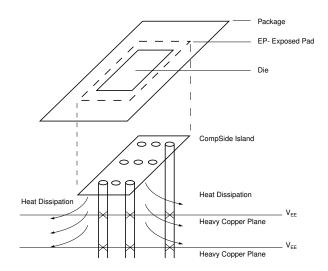




Figure 2c. Terminating Unused I/O


LEAD ULTRA-SMALL EPAD-*Micro*LeadFrame™ (MLF-8)


TOP VIEW

BOTTOM VIEW

ALL DIMENSIONS ARE IN MILLIMETERS.
MAX. PACKAGE WARPAGE IS 0.05 mm.
MAXIMM ALLOWABE BURRS IS 0.076 mm IN ALL DIRECTIONS.
PIN #1 ID ON TOP WILL BE LASER/INK MARKED.

PCB Thermal Consideration for 8-Pin MLF™ Package

Package Notes:

Note 1. Package meets Level 2 qualification.

Note 2. All parts are dry-packaged before shipment.

Note 3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.