imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V/5V 800MHz LVTTL/LVCMOS-to-DIFFERENTIAL LVPECL TRANSLATOR

FEATURES

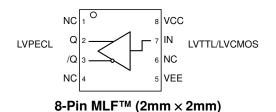
- Guaranteed AC performance over temp and voltage:
 - DC-to-800MHz f_{MAX}
 - <100ps IN-to-OUT t_{pd}
- Ultra-low jitter design:
 - <1ps_{RMS} random jitter
 - <10pspp deterministic jitter
 - <1ps_{BMS} cycle-to-cycle jitter
 - <1pspp total jitter (clock)
- Differential LVPECL output
- I_{CC} max. 20mA
- Q output will default HIGH with inputs open
- Power supply 3.3V ±10% or 5.0V ±10%
- -40°C to +85°C temperature range
- Available in ultra-small 8-pin (2mm × 2mm) MLF[™] package

Precision Edge[®]

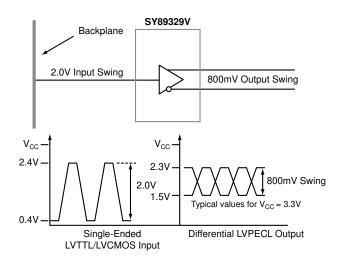
DESCRIPTION

The SY89329V is a TTL/CMOS-to-differential PECL translator. Capable of running from a 3.3V or 5V supply, the part can be used in either LVTTL/LVCMOS/LVPECL or TTL/CMOS/PECL systems.

The device requires only a single positive supply of 3.3V or 5V; no negative supply is required.

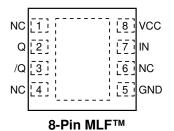

The ultra-small 8-pin MLF[™] package of the SY89329V makes it ideal for applications where space, performance, and low power are at a premium. For applications that require a dual translator in this same ultra-small MLF[™] package, consider the SY89322V.

All support documentation can be found on Micrel's web site at www.micrel.com.


APPLICATIONS

- High-speed logic
- Data communications systems
- Wireless communications systems
- Telecom systems

FUNCTIONAL BLOCK DIAGRAM



TYPICAL APPLICATIONS CIRCUIT

Precision Edge is a registered trademark of Micrel, Inc. *MicroLeadFrame* and MLF are trademarks of Amkor Technology, Inc.

PACKAGE/ORDERING INFORMATION

Package Operating Package Lead Part Number Туре Range Marking Finish Industrial SY89329VMITR MLF-8 329 Sn-Pb SY89329VMGTR MLF-8 329 with Pb-Free Industrial Pb-Free bar-line indicator NiPdAu

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
7	IN	Single-ended input: This is the LVTTL/LVCMOS input to the device. Input switching threshold is V _{CC} /2. If left floating, Q output will default HIGH.
8	VCC	Positive power supply. Bypass with 0.1μ F $ 0.01\mu$ F low ESR capacitors.
2, 3	Q, /Q	Differential LVPECL output: This output is the output of the device. Terminate with 50Ω to V_{CC} –2V. See "Output Interface Applications" section. Defaults HIGH if IN is floating.
5	GND, Exposed Pad	Ground: Ground pin and exposed pad must be connected to the same ground plane.
1, 4, 6	NC	No connect.

Ordering Information

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V _{CC}) $-0.5V$ to $+4.0V$
Input Voltage (V _{IN}) –0.5V to V _{CC}
LVPECL Output Voltage (V _{OUT}) V _{CC} -1.0V to V _{CC} +0.5V
LVPECL Output Current (I _{OUT})
Continuous
Surge100mA
Input Current
Source or sink current on IN±50mA
Lead Temperature (soldering, 20 sec.)+260°C
Storage Temperature (T_S) –65°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage (V _{CC})	3.0V to 3.3V 4.5V to 5.5V
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance ⁽³⁾	
MLF™ (θ _{JA})	
Still-Air	93°C/W
500lfpm	87°C/W
MLF™ (Ψ _{JB})	
Junction-to-board	32°C/W

DC ELECTRICAL CHARACTERISTICS⁽⁴⁾

 T_{Δ} = -40°C to +85°C; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply		3.0	3.3	3.6	V
			4.5	5.0	5.5	V
I _{CC}	Power Supply Current	No load, max. V _{CC} .			20	mA

LVTTL/LVCMOS ELECTRICAL CHARACTERISTICS⁽⁴⁾

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage (IN, /IN)		2.0			V
V _{IL}	Input LOW Voltage (IN, /IN)				0.8	V
I _{IH}	Input HIGH Current	V _{IN} = 2.7V			20	μΑ
		V _{IN} = V _{CC}			100	μA
I _{IL}	Input LOW Current	V _{IN} = 0.5V			-0.2	mA
V _{IK}	Input Clamp Voltage	$I_{IN} = -18mA$			-1.2	V

LVPECL OUTPUTS DC ELECTRICAL CHARACTERISTICS⁽⁴⁾

 $V_{CC} = 3.3V \pm 10\%$ or 5V $\pm 10\%$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$; $R_L = 50\Omega$ to V_{CC} -2V, or equivalent, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage Q, /Q	Note 2	V _{CC} -1.080		V _{CC} –0.880	V
V _{OL}	Output LOW Voltage Q, /Q		V _{CC} -1.830		V _{CC} –1.550	V
V _{OUT}	Output Voltage Swing Q, /Q	See Figure 1a.	600	800		mV
V _{DIFF-OUT}	Differential Output Voltage Swing Q, /Q	See Figure 1b.	1200	1600		mV

Notes:

- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 3. Package Thermal Resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. Ψ_{JB} uses 4-layer θ_{JA} in still-air unless otherwise stated.
- 4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

^{1.} Permanent device damage may occur if the "Absolute Maximum Ratings" are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

AC ELECTRICAL CHARACTERISTICS (5)

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Operating Frequency	$V_{OUT} \ge 350 mV$			800	MHz
t _{pd}	Propagation Delay IN-to-Q, /IN-to-/Q		100		600	ps
t _{JITTER}	Random Jitter (RJ)	Note 6			1	ps _{RMS}
	Deterministic Jitter (DJ)	Note 7			10	ps _{PP}
	Cycle-to-Cycle Jitter	Note 8			1	ps _{RMS}
	Total Jitter (TJ)	Note 9			25	ps _{PP}
t _r , t _f	Rise / Fall Time (20% to 80%) Q, /Q	At full output swing.	200		500	ps

 V_{CC} = 3.3V ±10% or 5.0V ±10%; T_A = -40°C to +85°C, unless otherwise stated.

Notes:

 Measured with outputs loaded with 50Ω to V_{CC} –2V unless otherwise stated. See "Timing Diagrams" section for definition of parameters. Highfrequency AC-parameters are guaranteed by design and characterization.

6. RJ is measured with a K28.7 comma detect character pattern, measured at $f_{\mbox{MAX}}$

7. DJ is measured at $f_{\text{MAX}}\text{,}$ with both K28.5 and 2^{23}\text{-1} PRBS pattern

8. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, Tn–Tn–1 where T is the time between rising edges of the output signal.

Total jitter definition: with an ideal clock input of frequency ≤ f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.

SINGLE-ENDED AND DIFFERENTIAL SWING

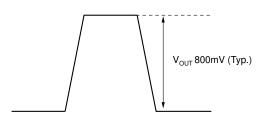
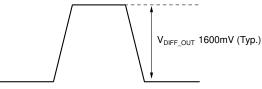
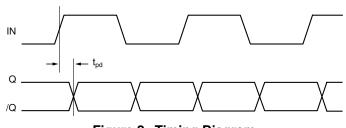
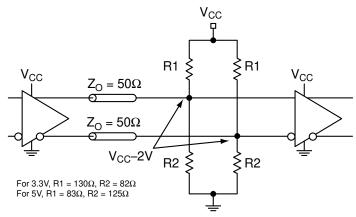


Figure 1a. Single-Ended Voltage Swing


Figure 1b. Differential Voltage Swing

TIMING DIAGRAM

Figure 2. Timing Diagram

OUTPUT INTERFACE APPLICATIONS

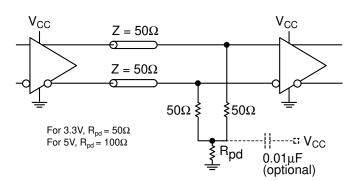
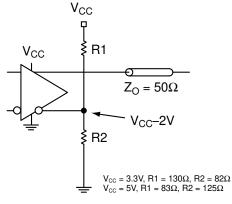
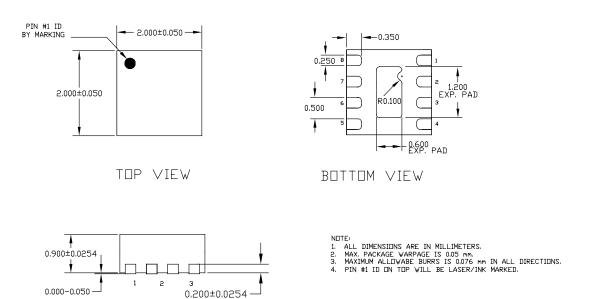



Figure 3b. Three-Resistor Termination



RELATED PRODUCT AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY89322V	3.3V/5V Dual LVTTL/LVCMOS-to-Differential LVPECL Translator	www.micrel.com/product-info/products/sy89322v.shtml
	MLF [™] Application Note	www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

8 LEAD MicroLeadFrame (MLF-8)

SIDE VIEW

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.