

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

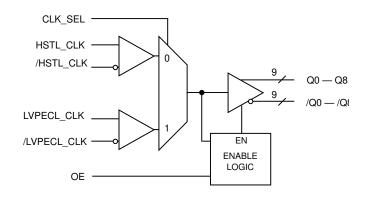
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V, 500MHz, 1:9 DIFFERENTIAL HSTL (1.5V) FANOUT BUFFER/TRANSLATOR

Precision Edge[®] SY89808L


FEATURES

- 9 differential HSTL (1.5V compatible) output pairs
- 500MHz maximum clock frequency
- Triple-buffered enable function
- 3.3V core supply, 1.8V output supply for reduced power
- **LVPECL and HSTL inputs**
- HSTL outputs drive 50Ω to ground with no offset voltage
- Low pin-to-pin skew (25ps max.)
- Guaranteed over industrial –40°C to +85°C temperature range
- Available in 32-pin TQFP package

APPLICATIONS

- Workstations
- Parallel processor-based systems
- High-performance computing
- **■** Communications

LOGIC SYMBOL

Precision Edge®

DESCRIPTION

The SY89808L is a High-Performance Bus Clock Driver with 9 differential HSTL (High-Speed Transceiver Logic) 1.5V compatible output pairs. The part is designed for use in low-voltage (3.3V/1.8V) applications which require a large number of outputs to drive precisely aligned, ultra-low skew signals to their destination. The input is multiplexed from either HSTL or LVPECL (Low-Voltage Positive-Emitter-Coupled Logic) by the CLK SEL pin.

The Output Enable (OE) is synchronous and triple-buffered so that the outputs will only be enabled/disabled when they are already in the LOW state. This avoids any potential of generating a runt clock pulse when the device is enabled/disabled, as can occur with an asynchronous control. The triple-buffering feature provides a three-clock delay from the time the OE input is asserted/de-asserted to when the clock appears at the outputs.

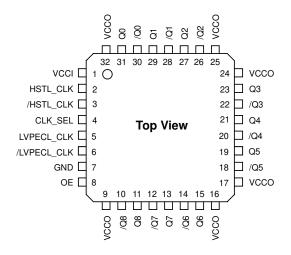
The SY89808L features an ultra-low pin-to-pin skew of less than 25ps. The SY89808L is available in a 32-TQFP space saving package, enabling a lower overall cost solution.

TRUTH TABLE

OE ⁽¹⁾	CLK_SEL	$Q_0 - Q_8$	$/Q_0 - /Q_8$
0	0	LOW	HIGH
0	1	LOW	HIGH
1	0	HSTL_CLK	/HSTL_CLK
1	1	LVPECL_CLK	/LVPECL_CLK

Notes:

 The OE (output enable) signal is synchronized with the low level of the HSTL CLK and LVPECL CLK signal.


TYPICAL PERFORMANCE

Precision Edge is a registered trademark of Micrel, Inc.

Rev.: E Amendment: /0
Issue Date: September 2005

PACKAGE/ORDERING INFORMATION

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89808LTI	T32-1	Industrial	SY89808LTI	Sn-Pb
SY89808LTITR ⁽²⁾	T32-1	Industrial	SY89808LTI	Sn-Pb
SY89808LTG ⁽³⁾	T32-1	Industrial	SY89808LTG with Pb-Free bar line indicator	NiPdAu Pb-Free
SY89808LTGTR ^(2, 3)	T32-1	Industrial	SY89808LTG with Pb-Free bar line indicator	NiPdAu Pb-Free

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25$ °C, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

32-Pin TQFP (T32-1)

PIN DESCRIPTION

Pin Number	Pin Name	Type	Pin Function	
2, 3	HSTL_CLK, /HSTL_CLK	HSTL Input	Differential clock input selected by CLK_SEL. Can be left floating if not selected. Floating input, if selected produces an indeterminate output. HST input signal requires external termination 50Ω to GND.	
5, 6	LVPECL_CLK, /LVPECL_CLK	LVPECL Input	Differential clock input selected by CLK_SEL. Can be left floating. Floating input, if selected produces a LOW at the output (internal 75 Ω pull-downs). Requires external termination. 75 κ 0 pull-up.	
4	CLK_SEL	LVTTL Input	Selects HSTL_CLK input when LOW and LVPECL_CLK output when HIGH. 11k Ω pull-up.	
8	OE	LVTTL Input	Enable input synchronized internally to prevent glitching of the Q0-Q8 and /Q0-/Q8 outputs. Must be a minimum of three clock periods wide if synchronous with the CLK inputs and must meet the $t_{\rm S}$ and $t_{\rm H}$ requirements (refer to AC Electrical Characteristics). If asynchronous, must be a minimum of four clock periods wide. 11k Ω pull-up.	
31, 29, 27, 23, 21, 19, 15, 13, 11	Q0–Q8	HSTL Output	Differential clock outputs from HSTL_CLK when CLK_SEL = LOW and LVPECL outputs when CLK_SEL = HIGH. HSTL outputs must be terminated with 50Ω to GND. Q0–Q8 outputs are static LOW when OE = LOW. Unused output pairs may be left floating.	
30, 28, 26, 22, 20, 18, 14, 12, 10	/Q0-/Q8	HSTL Output	Differential clock outputs from HSTL_CLK when CLK_SEL = LOW and LVPECL outputs when CLK_SEL = HIGH. HSTL outputs must be terminated with 50Ω to GND. /Q0-/Q8 outputs are static HIGH when OE = LOW. Unused output pairs may be left floating.	
1	VCCI	VCC Core Power	Core V_{CC} connected to 3.3V supply. Bypass with $0.1\mu F$ in parallel with $0.01\mu F$ low ESR capacitors as close to V_{CCI} pin as possible.	
9, 16, 17, 24, 25, 32	VCCO	VCC Output Power	Output Buffer V_{CC} connected to 1.8V supply. Bypass with $0.1\mu F$ in parallel with $0.01\mu F$ low ESR capacitors as close to V_{CCO} pins as possible. All V_{CCO} pins should be connected together on the PCB.	
7	GND	Ground	Ground.	

Absolute Maximum Ratings(1)

Operating Ratings⁽²⁾

Supply Voltage	
(V _{CCI})	+3.15V to +3.45V
(V _{CCO})	+1.6V to +2.0V
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance	
TQFP (θ _{JA})	
–Still-Air	50°C/W
–500lfpm	42°C/W
TQFP (θ _{1C})	20°C/W

DC ELECTRICAL CHARACTERISTICS

Power Supply $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CCI}	V _{CC} Core		3.15	3.3	3.45	V
V _{CCO}	V _{CC} Output		1.6	1.8	2.0	V
I _{CCI}	I _{CC} Core	Max V _{CC} , No Load	1	80	110	mA

HSTL $V_{CCI} = 3.3V \pm 5\%$; $V_{CCO} = 1.8V \pm 10\%$; $R_L = 50\Omega$ to GND; $T_A = -40^{\circ}\text{C}$ to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{OH}	Output HIGH Voltage		1.0	_	1.2	V
V_{OL}	Output LOW Voltage		0.2	_	0.4	V
V_{IH}	Input HIGH Voltage		V _X +0.1	_	1.6	V
V_{IL}	Input LOW Voltage		-0.3	_	V _X -0.1	V
V_X	Input Crossover Voltage		0.68	_	0.9	V
I _{IH}	Input HIGH Current		+20	_	-350	μΑ
I _{IL}	Input LOW Current				-500	μΑ

LVPECL $V_{CCI} = 3.3V \pm 5\%$; $V_{CCO} = 1.8V \pm 10\%$; $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated.

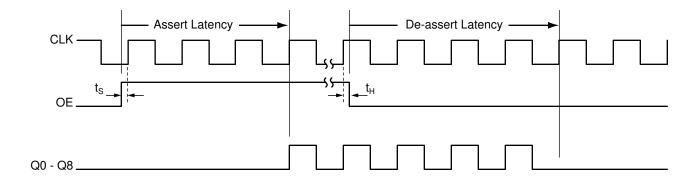
Symbol	Parameter	Condition	Min	Max	Units
V _{IH}	Input HIGH Voltage		V _{CCI} – 1.165	V _{CCI} – 0.880	V
V _{IL}	Input LOW Voltage		V _{CCI} – 1.810	V _{CCI} – 1.475	V
I _{IH}	Input HIGH Current		_	+150	μΑ
I _{IL}	Input LOW Current		0.5	_	μΑ

LVCMOS/LVTTL $V_{CCI} = 3.3V \pm 5\%$; $V_{CCO} = 1.8V \pm 10\%$; $T_A = -40$ °C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage		2.0	_	_	V
V _{IL}	Input LOW Voltage		_	_	0.8	٧
I _{IH}	Input HIGH Current		+20	_	-250	μΑ
I _{IL}	Input LOW Current		_	_	-600	μΑ

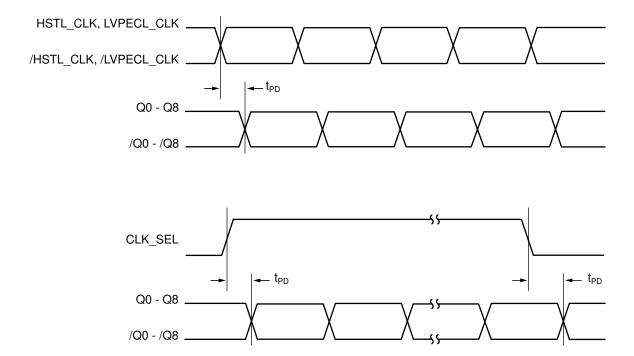
Notes:

- 1. Permanent device damage may occur if "Absolute Maximum Ratings" are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

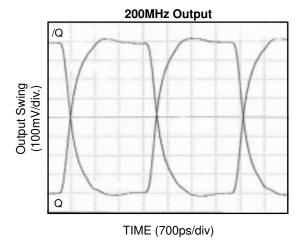

AC ELECTRICAL CHARACTERISTICS

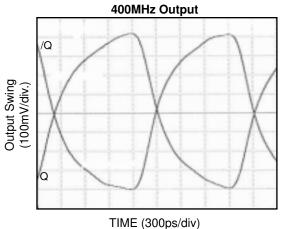
 $V_{CCI} = 3.3V \pm 5\%$; $V_{CCO} = 1.8V \pm 10\%$; All outputs are loaded with 50Ω to GND; $T_A = -40$ °C to +85°C, unless otherwise stated.

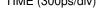
Symbol	Parameter		Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Operating Frequ	ency	V _{OUT} ≥ 450mV	500	_	_	MHz
t _{pd}	Propagation Delay C	CLK-to-Q	Note 3	0.800	1.000	1.200	ns
	5	SEL-to-Q	Note 3	0.800	1.200	1.700	ns
t _{SKEW}	Within-Device Skew		Note 4	_	_	25	ps
t _{SKPP}	Part-to-Part Skew		Note 5	_	_	400	ps
V_{pp}	Minimum Input Swing LVPECL_CLK		Note 6	150	_	_	mV
V _{CMR}	Common Mode Range LVPECL_CLK		Note 7	-1.5	_	-0.4	V
t _S	OE Set-Up Time		Note 8	1.0	_	_	ns
t _H	OE Hold Time			0.5		_	ns
t _r , t _f	Output Rise/Fall Time (20%	% – 80%)		250	450	650	ps
t _{JITTER}	Cycle-to-Cycle Jitter		Note 9			1	ps _{RMS}
	Total Jitter		Note 10			10	ps _{PP}

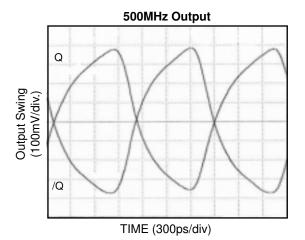

- 3. Differential propagation delay is defined as the delay from the crossing point of the differential input signals to the crossing point of the differential output signals.
- 4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device operating at the same voltage and temperature.
- 5. The part-to-part skew is defined as the absolute worst case difference between any two delay paths on any two devices operating at the same voltage and temperature.
- 6. The V_{PP} (min.) is defined as the minimum input differential voltage which will cause no increase in the propagation delay.
- 7. V_{CMR} is defined as the range within which the V_{IH} level may vary, with the device still meeting the propagation delay specification. The numbers in the table are referenced to V_{CCI}. The V_{IL} level must be such that the peak-to-peak voltage is less than 1.0V and greater than or equal to V_{PP} (min.). The lower end of the CMR range varies 1:1 with V_{CCI}. The V_{CMR} (min) will be fixed at 3.3V |V_{CMR} (min)|.
- 8. OE set-up time is defined with respect to the rising edge of the clock. OE HIGH to LOW transition ensures outputs remain disabled during the next clock cycle. OE LOW to HIGH transition enables normal operation of the next input clock.
- 9. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, T_n-T_{n-1} where T is the time between rising edges of the output signal
- 10. Total jitter definition: with an ideal clock source of ≤ f_{max}, no more than one output edge in 10¹² output edges will deviate by more than the specified amount.

TIMING DIAGRAMS


Notes:


- 1. The OE input signal must be a minimum of 3 clock periods with width.
- 2. The internal enable is asserted and de-asserted on the falling edge of clock.
- 3. The internal enable occurs 2.5 clock cycles (plus the set-up time of OE with the rising edge of clock) after the rising edge of the external OE.
- 4. If OE does not meet the t_S of t_H specifications as in asynchronous applications, OE must be a minimum of 4 clock periods in width.




TYPICAL OPERATING CHARACTERISTICS

 V_{CCI} = 3.0V, V_{CCO} = 1.8V, T_A = 25°C, unless otherwise stated.

LVPECL/HSTL INPUTS

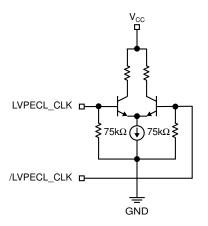


Figure 1. Simplified LVPECL Input Stage

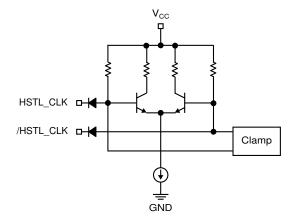


Figure 2. Simplified HSTL Input Stage

HSTL OUTPUTS

Figure 3. Output Driver Signal Levels (Single-Ended)

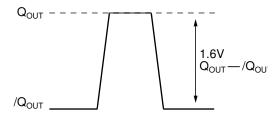
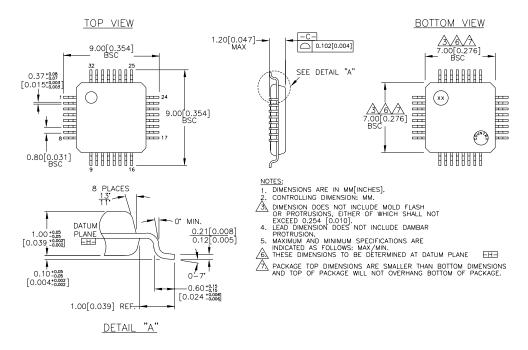



Figure 4. Output Driver Signal Levels (Differential)

RELATED PRODUCT AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY89809L	3.3V 1:9 High-Performance, Low-Voltage Bus Clock Driver	www.micrel.com/product-info/products/sy89809l.shtml
SY89823L	3.3V, 500MHz 1:22 Differential HSTL (1.5V) Fanout Buffer/Translator	www.micrel.com/product-info/products/sy89823l.html
	Exposed Pad Application Note	www.amkor.com/products/notes_papers/epad.pdf
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml
MIC3775	750mA μCap Low-Voltage Low-Dropout Regulator	www.micrel.com/product-info/products/mic3775.shtml

32 LEAD TQFP (T32-1)

Package Notes:

Package meets Level 2 qualification.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.