mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MICREL

General Description

The SY89809AL is a high-performance bus clock driver with nine differential High-Speed Transceiver Logic (HSTL) output pairs. The part is designed for use in low-voltage (3.3V/1.8V) applications, which require a large number of outputs to drive precisely aligned, ultra-low skew signals to their destination. The input is multiplexed from either HSTL or Low-Voltage Positive-Emitter-Coupled Logic (LVPECL) by the CLK_SEL pin. The Output Enable (OE) is synchronous so that the outputs will only be enabled/disabled when they are already in the LOW state. This avoids any chance of generating a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control.

The SY89809AL features low pin-to-pin skew (15ps typical) and low part-to-part skew (100ps typical). The SY89809AL is available in a single space-saving package, enabling a lower overall cost solution.

Datasheets and support documentation can be found on Micrel's web site at: <u>www.micrel.com</u>.

Precision Edge[®]

Features

- 3.3V core supply, 1.8V output supply for reduced power
- LVPECL and HSTL inputs
- Nine differential HSTL (low-voltage swing) output pairs
- HSTL outputs drive 50Ω-to-ground with no offset voltage
- 750MHz maximum clock frequency
- Low part-to-part skew (100ps typical)
- Low pin-to-pin skew (15ps typical)
- Available in 32-pin TQFP

Applications

- High-performance PCs
- Workstations
- Parallel processor-based systems
- Other high-performance computing
- Communications

Level	Direction	Signal
HSTL	Input	HSTL_CLK, /HSTL_CLK
HSTL	Output	Q0 – Q8, /Q0 – /Q8
LVPECL	Input	LVPECL_CLK, /LVPECL_CLK
LVCMOS/LVTTL	Input	CLK_SEL, OE

Table 1. Signal Groups							
OE ⁽¹⁾	CLK_SEL	Q0 – Q8	/Q0 — /Q8				
0	0	LOW	HIGH				
0	1	LOW	HIGH				
1	0	HSTL_CLK	/HSTL_CLK				
1	1	LVPECL_CLK	/LVPECL_CLK				

Table 2. Truth Table

Note:

 The OE (output enable) signal is synchronized with the low level of the HSTL_CLK and LVPECL_CLK signal.

Precision Edge is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Block Diagram

OE

D

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89809ALTZ ⁽³⁾	T32-1	Commercial	SY89809ALTZ with Pb-Free bar-line indicator	Matte-Sn Pb-Free
SY89809ALTZTR ^(2, 3)	T32-1	Commercial	SY89809ALTZ with Pb-Free bar-line indicator	Matte-Sn Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals only.

2. Tape and Reel.

3. Pb-Free package is recommended for new designs.

Pin Configuration

32-Pin TQFP (T32-1)

Pin Description

Pin Number	Pin Name	Туре	Pin Function
2, 3	HSTL_CLK, /HSTL_CLK	HSTL Input	Differential clock input selected by CLK_SEL. Can be left floating if not selected. Floating input, if selected, produces a LOW at HSTL_CLK and a HIGH at /HSTL_CLK. HSTL input signal requires external termination 50Ω -to-ground.
5, 6	LVPECL_CLK, /LVPECL_CLK	LVPECL Input	Differential clock input selected by CLK_SEL. Can be left floating if not selected. Floating input, if selected, produces a LOW at LVPECL_CLK and a HIGH at /LVPECL_CLK. Non-inverted input has a 75k Ω pull-down. Inverted input has a 75k Ω pull-down and a 37.5k Ω pull-up.
4	CLK_SEL	LVTTL Input	Selected HSTL_CLK input when LOW and LVPECL_CLK output when HIGH. 37.5k Ω pull-up.
8	OE	LVTTL Input	Enable input synchronized internally to prevent glitching of the Q0-Q8 and /Q0-/Q8 outputs. OE high-to-low transition ensures outputs remain disabled during the next clock cycle. OE low-to-high transition enables normal operation of the next input clock. 37.5k Ω pull-up.
31, 29, 27, 23, 21, 19, 15, 13, 11	Q0 – Q8	HSTL Output	Differential clock outputs from HSTL_CLK when CLK_SEL = LOW and and from LVPECL outputs when CLK_SEL = HIGH. HSTL outputs must be terminated with 50Ω to GND. Q0-Q8 outputs are static LOW when OE = LOW. Unused output pairs may be left floating.

Pin Description (Continued)

Pin Number	Pin Name	Туре	Pin Function
30, 28, 26, 22, 20, 18, 14, 12, 10	/Q0 – /Q8	HSTL Output	Differential clock outputs from HSTL_CLK when CLK_SEL = LOW and from LVPECL outputs when CLK_SEL = HIGH. HSTL outputs must be terminated with 50 Ω to GND. /Q0-/Q8 outputs are static HIGH when OE = LOW. Unused output pairs may be left floating.
1	VCCI	VCC Core Power	Core V_{CC} connected to 3.3V supply. Bypass with 0.1µF in parallel with 0.01µF low ESR capacitors as close to V_{CCI} pin as possible.
9, 16, 17, 24, 25, 32	VCCO	VCC Output Power	Output Buffer VCC connected to 1.8V supply. Bypass with 0.1 μ F in parallel with 0.01 μ F low ESR capacitors as close to V _{CCO} pins as possible. All V _{CCO} pins should be connected together on the PCB.
7	GND	Ground	Ground.

Absolute Maximum Ratings⁽¹⁾

Input Voltage (V _{IN})	–0.5V to V _{CCI}
V _{CC} Pin Potential to Ground Pin	
(V _{CCI} , V _{CCO})	–0.5V to +4.0V
Output Current (I _{OUT})	
Continuous	50mA
Surge	100mA
Lead Temperature (soldering, 20sec.)	
Storage Temperature (T _s)	–65°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage	
(V _{CCI})	+3.0V to +3.6V
(V _{CCO})	+1.6V to +2.0V
Ambient Temperature (T _A)	0°C to +85°C
Package Thermal Resistance	
TQFP (θ _{JA})	
–Still-Air	50°C/W
–500lfpm	42°C/W
TQFP (θ _{JC})	20°C/W

DC Electrical Characteristics

 $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units			
Power Supply									
V _{CCI}	V _{CC} Core		3.0	3.3	3.6	V			
V _{cco}	V _{CC} Output		1.6	1.8	2.0	V			
I _{CCI}	I _{CC} Core			65	90	mA			
HSTL									
V _{OH}	Output HIGH Voltage ⁽³⁾		1.0		1.2	V			
V _{OL}	Output LOW Voltage ⁽³⁾		0.1		0.4	V			
V _{IH}	Input HIGH Voltage		V _X +0.1		1.6	V			
V _{IL}	Input LOW Voltage		-0.3		V _X – 0.1	V			
Vx	Input Crossover Voltage		0.68		0.9	V			
I _{IH}	Input HIGH Current		-350		20	μA			
IIL	Input LOW Current		-500			μA			
VIHCMR	Input HIGH Voltage Common Mode Range(Differential Configuration)		0.6		1.6	V			
LVPECL									
V _{IH}	Input HIGH Voltage		V _{CCI} – 1.145		$V_{CCI} - 0.895$	V			
VIL	Input LOW Voltage		V _{CCI} – 1.945		V _{CCI} – 1.695	V			
I _{IH}	Input HIGH Current		-150		150	μA			
IIL	Input LOW Current		-150		150	μA			
VIHCMR	Input HIGH Voltage Common Mode Range(Differential Configuration) ⁽⁴⁾		1.2		V _{CCI}	V			

Notes:

1. Exceeding the absolute maximum rating may damage the device.

2. The device is not guaranteed to function outside its operating rating.

3. Outputs loaded with 50Ω to ground.

4. V_{IHCMR} max varies 1:1 with V_{CCI}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

DC Electrical Characteristics

 $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
LVCMOS/LVTTL							
VIH	Input HIGH Voltage		2.0			V	
VIL	Input LOW Voltage				0.8	V	
IIH	Input HIGH Current		-150		150	μA	
IIL	Input LOW Current		-300		300	μA	

AC Electrical Characteristics⁽⁵⁾

 $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted.

		0		25°C		85°C					
Symbol	Parameters	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
	Differential Output Voltage										
Va	F _{OUT} < 100MHz	600	800		600	800		600	800		
• Орр	F _{OUT} < 500MHz	600	700		600	700		600	700		mV
	F _{OUT} < 750MHz	450	510		450	510		450	510		
	Propagation Delay										
t _{PLH}	(Differential Configuration)										20
t _{PHL}	LVPECL_CLK to Q	680	800	930	700	820	950	780	920	1070	μs
	HSTL_CLK to Q	690	830	990	700	850	1000	790	950	1110	
+	Pin-to-Pin Skew ⁽⁶⁾		15	25		15	25		15	25	
LSkew	Part-to-Part Skew ⁽⁷⁾		100	200		100	200		100	200	ps
t _{JITTER}	Random Clock Jitter (RMS)		1.4	3		1.4	3		1.4	3	ps
	Input Voltage Swing ⁽⁸⁾										
V_{PP}	LVPECL	200			200			200			
	HSTL	200		1900	200		1900	200		1900	mV
ts	OE Set-Up Time ⁽⁹⁾	0.5			0.5			0.5			ns
t _H	OE Hold Time	0.5			0.5			0.5			ns
t _{r,} t _f	Output Rise/Fall Times (20% to 80%) Q, /Q	350		600	350	450	600	350		600	ps

Notes:

5. Outputs loaded with 50Ω to ground. Airflow \ge 500lfpm.

6. The Pin-to-Pin skew is defined as the worst-case difference between any two similar delay paths within a single device operating at the same voltage and temperature.

7. The Part-to-Part skew is defined as the absolute worst-case difference between any two delay paths on any two devices operating at the same voltage and temperature.

8. V_{PP} is the Input Voltage swing required to maintain AC characteristics listed herein. It represents the input voltage swing for CLK or /CLK.

9. OE set-up time is defined with respect to the rising edge of the clock. OE HIGH-to-LOW transition ensures outputs remain disabled during the next clock cycle.

Output Waveforms

Figure 1. 100MHz Output Waveform

Figure 2. 500MHz Output Waveform

Frequency vs. Amplitude

Figure 3. Output Enable Timing Diagram

Package Information

32-Pin TQFP (T32-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB <u>http://www.micrel.com</u>

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2010 Micrel, Incorporated.