

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

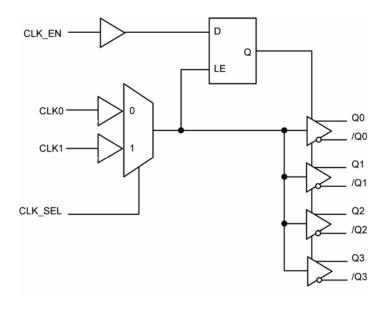
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SY898535L

Precision Differential 3.3V, Low Skew, 1:4 LVCMOS/LVTTL -to-LVPECL Fanout Buffer


General Description

The SY898535L is a 3.3V, low skew, 1:4 LVCMOS/LVTTL-to-LVPECL fanout buffer with two selectable single ended clock inputs. The CLK0 and CLK1 accept LVCMOS or LVTTL input levels and translate them to 3.3V LVPECL levels. To eliminate runt pulses on the outputs during asynchronous assertion/de-assertion of the clock enable pin, the clock enable is synchronized with the input signal.

The SY898535L operates from a 3.3V $\pm 5\%$ supply and is guaranteed over the full industrial temperature range of -40° C to $+85^{\circ}$ C. The SY898535L is part of Micrel's high-speed, Precision Edge[®] product line.

Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Functional Block Diagram

Features

- Provides four differential 3.3V LVPECL copies
- Selects between single-ended CLK0 or CLK1 input
- CLK0 and CLK1 accept LVCMOS or LVTTL input levels
- Guaranteed AC performance over temperature and supply voltage:
 - 235MHz Maximum output frequency
 - <1.9ns Propagation delay (In-to-Q)
 - <30ps Output skew
 - <250ps Part-to-part skew

Additive phase jitter, RMS: 0.09ps (typical)

- 3.3V ±5% supply voltage
- -40°C to +85°C industrial temperature operating range
- Available in a 20-pin TSSOP package

Applications

- · Gigabit Ethernet
- 10Gigabit Ethernet
- SONET/SDH
- PCI

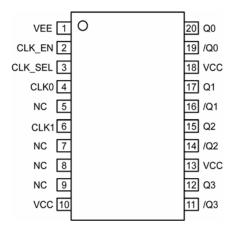
Markets

- LAN/WAN
- Enterprise servers
- ATE
- · Test and measurement

Precision Edge is a registered trademark of Micrel, Inc.

Ordering Information(1)

Part Number	Package Type	Operating Range	Package Marking		
SY898535LKY	K4-20-1	Industrial	898535L with Pb-Free Bar-Line Indicator		
SY898535LKYTR ⁽²⁾	K4-20-1	Industrial	898535L with Pb-Free Bar-Line Indicator		


Notes:

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals Only.
- 2. Tape and Reel.

Truth Table

Inputs			Outputs		
CLK_EN	CLK_SEL	Selected Source	Source Q0 :Q3 /Q0:/Q3		
0	0	CLK0	Disabled : LOW	Disabled : HIGH	
0	1	CLK1	Disabled : LOW	Disabled : HIGH	
1	0	CLK0	Enabled	Enabled	
1	1	CLK1	Enabled	Enabled	

Pin Configuration

20-Pin TSSOP (K4-20-1)

Pin Description

Pin Number	Pin Name	Pin Function
1	V _{EE}	Ground.
2	CLK_EN	Single-Ended Input: This TTL/CMOS input disables and enables the Q0-Q3 outputs. It is internally connected to a $51k\Omega$ pull-up resistor and will default to a logic HIGH state if left open. When disabled, Q goes LOW and /Q goes HIGH. CLK_EN being synchronous, outputs will be enabled/disabled following a rising and a falling edge of the input clock. V_{TH} = is approximately 1.5V.
3	CLK_SEL	Single-Ended Input: This single-ended TTL/CMOS-compatible input selects the input to the multiplexer. If HIGH, selects CLK1 input. When LOW, it selects CLK0 input. Note that this input is internally connected to a $51k\Omega$ pull-down resistor and will default to logic LOW state if left open. V_{TH} = is approximately 1.5V.
4	CLK0	Single-Ended Input: This LVCMOS or LVTTL signal is the input signal to the device. It is internally connected to a $51k\Omega$ pull-down resistor and will default to a logic LOW state if left open. This input is selected when CLK_SEL is set to logic LOW.
6	CLK1	Single-Ended Input: This LVCMOS or LVTTL signal is the input signal to the device. It is internally connected to a $51k\Omega$ pull-down resistor and will default to a logic LOW state if left open. This input is selected when CLK_SEL is set to logic HIGH.
5, 7, 8, 9	NC	Unused Pins
10, 13, 18	VCC	Positive Power Supply Pins: Bypass with $0.1\mu F 0.01\mu F $ low ESR capacitors as close to the V_{CC} pins as possible.
20, 19 17, 16 15, 14 12, 11	Q0, /Q0 Q1, /Q1 Q2, /Q2 Q3, /Q3	LVPECL Differential Output Pairs: Differential buffered output copies the selected input signal. The output swing is typically 800mV. Unused output pairs may be left floating with no impact on jitter. These differential LVPECL outputs are a logic function of the CLK0 and CLK1 inputs. See "Truth Table" below.

SY898535L Micrel, Inc.

Absolute Maximum Ratings(1)

Supply Voltage (V _{CC})	–0.5V to +4.6V
Input Voltage (V _{IN})	$-0.5V$ to $V_{CC} + 0.5V$
LVPECL Output Current (I _{OUT})	
Continuous	50mA
Surge	100mA
Lead Temperature (soldering, 20 sec.).	
Storage Temperature (T _s)	65°C to 150°C

Operating Ratings⁽²⁾

Supply Voltage (V _{CC})	+3.135V to +3.465V
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance ⁽³⁾	
TSSOP (θ_{JA})	
Still-Air	73.2°C/W

Power Supply DC Electrical Characteristics (4)

 V_{CC} = 3.3V ±5%; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply		3.135	3.3	3.465	V
I _{EE}	Power Supply Current	No load, max V _{CC}			55	mA

LVCMOS/LVTTL DC Electrical Characteristics (4)

 V_{CC} = 3.3V ±5%; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter		Condition	Min	Тур	Max	Units
V _{IH}	Input High Voltage	CLK0, CLK1		2		V _{CC} + 0.3V	V
		CLK_EN, CLK_SEL		2		V _{CC} + 0.3V	V
V _{IL}	Input Low Voltage	CLK0, CLK1		-0.3		1.3	V
		CLK_EN, CLK_SEL		-0.3		0.8	V
I _{IH}	Input High Current	CLK0, CLK1, CLK_SEL	$V_{IN} = V_{CC} = 3.465V$			150	μA
		CLK_EN	$V_{IN} = V_{CC} = 3.465V$			5	μA
I _{IL}	Input Low Current	CLK0, CLK1, CLK_SEL	$V_{IN} = 0V, V_{CC} = 3.465V$	-5			μA
		CLK_EN	$V_{IN} = 0V, V_{CC} = 3.465V$	-150			μA

LVPECL DC Electrical Characteristics (4)

 V_{CC} = 3.3V ±5%; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output High Voltage ⁽⁵⁾		V _{CC} - 1.4		$V_{CC} - 0.9$	٧
V _{OL}	Output Low Voltage ⁽⁵⁾		V _{CC} – 2.0		V _{CC} - 1.7	٧
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

Notes:

- 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 3. θ_{JA} value is determined for a 4-layer board in still air unless otherwise stated.
- 4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- 5. 50Ω to V_{CC} -2V terminated outputs.

AC Electrical Characteristics⁽⁶⁾

 V_{CC} = 3.3V ±5%; R_L = 50 Ω to V_{CC} -2V; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Operating Frequency				235	MHz
t _{PD}	Propagation Delay ⁽⁷⁾	f ≤ 266MHz	1.0		1.4	ns
t _{SKEW}	Output-to-Output Skew ⁽⁸⁾			11	30	ps
	Part-to-Part Skew ⁽⁹⁾				250	ps
t _{JITTER}	Additive Phase Jitter ⁽¹⁰⁾			0.09		ps _{RMS}
t _{r,} t _f	Output Rise/Fall Time	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		48	50	52	%

Notes:

- 6. High-frequency AC-parameters are guaranteed by design and characterization.
- 7. Measured from $V_{CC}/2$ of the input to the differential output crossing point.
- 8. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.
- 9. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
- 10. Driving only one input clock.

Timing Diagrams

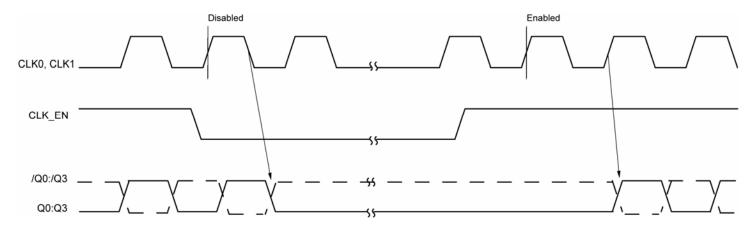


Figure 1a. CLK_EN Timing Diagram

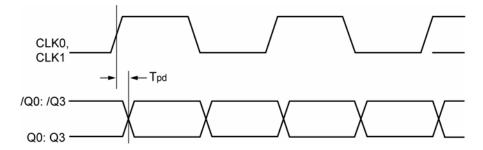


Figure 1b. Propagation Delay

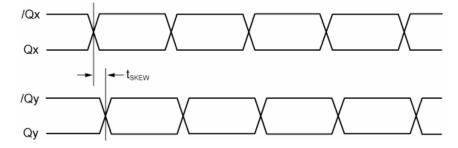
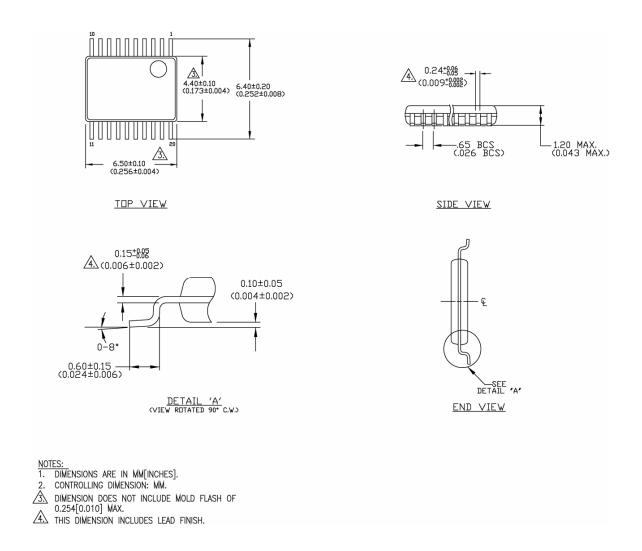



Figure 1c. Output-to-Output Skew

Package Information

20-Pin TSSOP (K4-20-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2011 Micrel, Incorporated.