

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SY89856U

2GHz, Low-Power, 1:6 LVPECL Fanout Buffer with 2:1 Input MUX and Internal Termination

General Description

The SY89856U is a 2.5V/3.3V precision, high-speed, 1:6 fanout capable of handling clocks up to 2.0GHz. A differential 2:1 MUX input is included for redundant clock switchover applications.

The differential input includes Micrel's unique, 3-pin input termination architecture that allows the device to interface to any differential signal (AC- or DC-coupled) as small as 100mV (200mV_{pp}) without any level shifting or termination resistor networks in the signal path. The outputs are LVPECL (100k, temperature compensated), with extremely fast rise/fall times guaranteed to be less than 200ps.

The SY89856U operates from a 2.5V $\pm 5\%$ supply or a 3.3V $\pm 10\%$ supply and is guaranteed over the full industrial temperature range of -40° C to $+85^{\circ}$ C. The SY89856U is part of Micrel's high-speed, Precision Edge[®] product line.

Datasheets and support documentation are available on Micrel's web site at: www.micrel.com.

Features

- 6 ultra-low skew copies of the selected input
- 2:1 MUX input included for clock switchover applications
- Low power: 225mW typical (2.5V)
- 2.5V to 3.3V supply voltage
- Unique input isolation design minimizes crosstalk
- Guaranteed AC performance over temperature and voltage:
 - Clock frequency range: DC to >2.0GHz
 - <400ps IN-to-OUT t_{pd}
 - <200ps t_r/t_f times
 - <30ps skew (output-to-output)</p>
- Ultra-low jitter design:
 - 40fs RMS phase jitter
 - 0.7ps_{RMS} crosstalk-induced jitter
- Unique input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS)
- 100k LVPECL compatible output swing
- -40°C to +85°C industrial temperature range
- Available in 32-pin (5mm x 5mm) QFN package

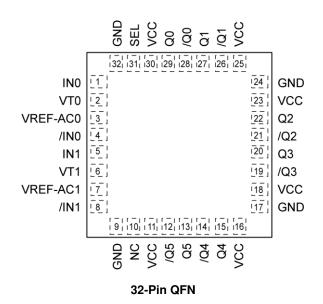
Applications

- · Redundant clock distribution
- All SONET/SDH clock/data distribution
- · All Fibre Channel distribution
- All Gigabit Ethernet clock distribution

Markets

- LAN/WAN
- Enterprise servers
- ATE
- Test and measurement

Precision Edge is a registered trademark of Micrel, Inc.

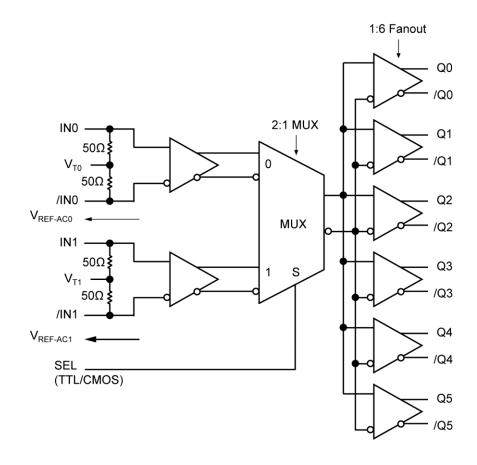

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	inge Package Marking Le	
SY89856UMG	QFN-32	Industrial	SY89856U with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY89856UMGTR ⁽²⁾	QFN-32	Industrial	SY89856U with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
- 2. Tape and Reel.

Pin Configuration


Pin Description

Pin Number	Pin Name	Pin Function	
1, 4 5, 8	IN0, /IN0 IN1, /IN1	Differential Input: These input pairs are the differential signal inputs to the device. These inputs accept AC- or DC-coupled signals as small as 100mV ($200\text{mV}_{\text{p-p}}$). Each pin of a pair internally terminates to a VT pin through 50Ω . Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details.	
2, 6	VT0, VT1	Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT0 and VTI pins provide a center-tap to a termination network for maximum interface flexibility. See the "Input Interface Applications" section for more details.	
31	SEL	is single-ended TTL/CMOS-compatible input selects the inputs to the multiplexer. Note that thi ut is internally connected to a $25k\Omega$ pull-up resistor and will default to logic HIGH state if left en. The MUX select switchover function is asynchronous.	
10	NC	No connect.	
11, 16, 18, 23, 25, 30	VCC	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors as close to VCC pins possible.	
29, 28 27, 26 22, 21 20, 19 15, 14 13, 12	Q0, /Q0, Q1, /Q1, Q2, /Q2, Q3, /Q3, Q4, /Q4, Q5, /Q5	Differential Outputs: These 100k (temperature compensated) LVPECL output pairs are low skew copies of the selected input. Unused output pins may be left floating. Please refer to the "LVPECL Output Interface Applications" section for details.	
9, 17, 24, 32	GND, Exposed Pad	Ground: Ground pins and exposed pad must be connected to the same ground plane.	
3, 7	VREF-AC0 VREF-AC1	Reference Voltage: This output biases to $V_{\text{CC}}-1.2\text{V}$. It is used for AC-coupling inputs (IN, /IN). Connect VREF_AC directly to the VT pin. Bypass with $0.01\mu\text{F}$ low ESR capacitor to V_{CC} . See the "Input Interface Applications" section. Maximum sink/source current is $\pm 1.5\text{mA}$. Due to the limited drive capability use for input at the same package only.	

LVPECL Output Interface Applications

SEL	Output
0	IN0 Input Selected
1	IN1 Input Selected

Functional Block Diagram

Absolute Maximum Ratings⁽³⁾

Supply Voltage (V _{CC})	–0.5V to +4.0V
Input Voltage (V _{IN})	0.5V to V _{CC}
LVPECL Output Current (I _{OUT})	
Continuous	50mA
Surge	100mA
Termination Current	
Source or sink current on V _T	±100mA
V _{REF-AC} Source or sink current	±2.0mA
Lead Temperature (soldering, 20s)	+260°C
Storage Temperature (T _s)	

Operating Ratings⁽⁴⁾

Supply Voltage (V _{CC})	+2.375V to +2.625V
	+3.0V to +3.6V
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance ⁽⁵⁾	
QFN (θ_{JA})	
Still-Air	35°C/W
QFN (ψ _{JB})	
Junction-to-Board	16°C/W

DC Electrical Characteristics⁽⁶⁾

 $T_A = -40$ °C to +85°C, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{CC}	Power Supply Voltage		2.375	2.5	2.625	V
			3.0	3.3	3.6	V
Icc	Power Supply Current	No load, max V _{CC} .		90	140	mA
R _{IN}	Input Resistance (IN-to-V _T)		45	50	55	Ω
R _{DIFF_IN}	Differential Input Resistance (IN-to-/IN)		90	100	110	Ω
V_{IH}	Input High Voltage (IN, /IN)	Note 7	V _{IH} – 1.6		V _{CC}	V
V _{IL}	Input Low Voltage (IN, /IN)		0		V _{IH} -0.1	V
V_{IN}	Input Voltage Swing (IN, /IN)	See Figure 1.	0.1		1.7	V
V _{DIFF_IN}	Differential Input Voltage Swing IN-/IN	See Figure 2.	0.2			٧
V _{T_IN}	IN-to-V _T (IN, /IN)				1.28	V
V _{REF-AC}	Output Reference Voltage		V _{CC} – 1.3	V _{CC} – 1.2	V _{CC} – 1.1	V

Notes:

- 3. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may affect device reliability.
- 4. The datasheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 5. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. θ_{JA} and ψ_{JB} values are determined for a 4-layer board in still air, unless otherwise stated.
- 6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- 7. V_{IH} (min) not lower than 1.2V.

LVPECL DC Electrical Characteristics⁽⁶⁾

 V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to + 85°C; R_L = 50 Ω to V_{CC} - 2V, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{OH}	Output HIGH Voltage		V _{CC} - 1.145		V _{CC} - 0.895	٧
V _{OL}	Output LOW Voltage		V _{CC} – 1.945		V _{CC} - 1.695	٧
V _{OUT}	Output Voltage Swing	See Figure 1.	550	800		mV
V _{DIFF-OUT}	Differential Output Voltage Swing	See Figure 2.	1.1	1.6		V

LVTTL/CMOS DC Electrical Characteristics⁽⁶⁾

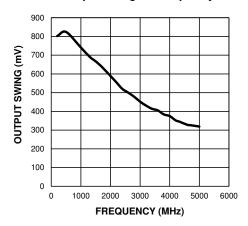
 $V_{CC} = 2.5 V \pm 5\%$ or $3.3 V \pm 10\%$; $T_A = -40$ °C to +85°C, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V _{IH}	Input HIGH Voltage		2.0			٧
V_{IL}	Input LOW Voltage				0.8	٧
I _{IH}	Input HIGH Current		-125		30	μΑ
I _{IL}	Input LOW Current		-300			μΑ

AC Electrical Characteristics⁽⁸⁾

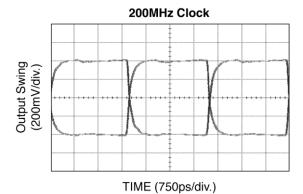
 V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to + 85°C, unless otherwise noted.

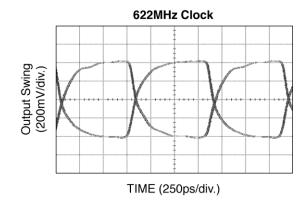
Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
f _{MAX}	Maximum Operating Frequency	V _{OUT} ≥ 400mV	2.0	3.0		GHz
t _{pd}	Differential Propagation Delay					
	(IN0 or IN1-to-Q)		200	280	400	ps
	(SEL-to-Q)		140		460	ps
Δt_{pd} Tempco	Differential Propagation Delay Temperature Coefficient			65		fs/°C
tskew	Output-to-Output	Note 9		10	30	ps
	Part-to-Part	Note 10			150	ps
t JITTER	RMS Phase Jitter	Output = 500MHz Integration Range – 12kHz – 20MHz		40		fs
	Adjacent Channel Crosstalk-Induced Jitter	Note 11			0.7	ps _(rms)
t _r , t _f	Output Rise/Fall Time	Full swing, 20% to 80%.	75	130	200	ps

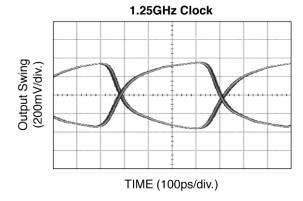

Notes:

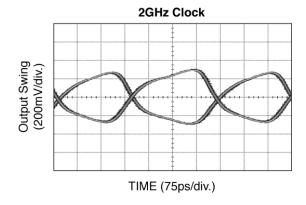
- 8. High-frequency AC-parameters are guaranteed by design and characterization.
- 9. Output-to-output skew is measured between outputs under identical input conditions.
- 10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
- 11. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each other at the inputs.

Typical Characteristics

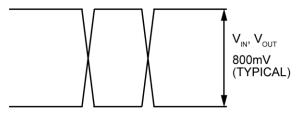

 $V_{\text{CC}} = 3.3 \text{V, GND} = 0 \text{V, V}_{\text{IN}} \geq 400 \text{mV, t}_{\text{r}} / \text{t}_{\text{f}} \leq 300 \text{ps, T}_{\text{A}} = 25 ^{\circ} \text{C, unless otherwise noted.}$


Output Swing vs. Frequency




Functional Characteristics

 $V_{CC} = 3.3V$, GND = 0V, $V_{IN} \ge 400$ mV, $t_r/t_f \le 300$ ps, $T_A = 25$ °C, unless otherwise stated.



Singled-Ended and Differential Swings

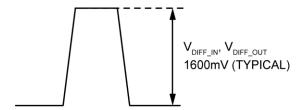
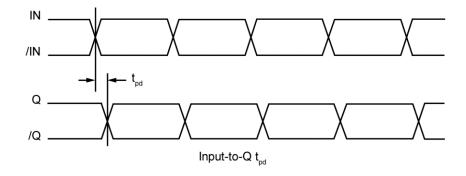
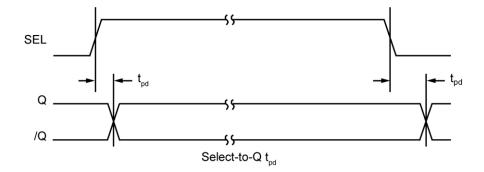




Figure 2. Differential Voltage Swing

Timing Diagrams

Input and Output Stages

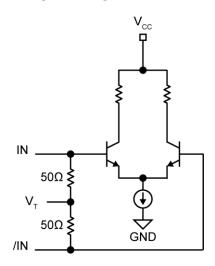


Figure 3. Simplified Differential

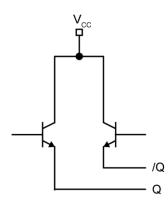


Figure 4. Simplified LVPECL Output Stage

Input Interface Applications

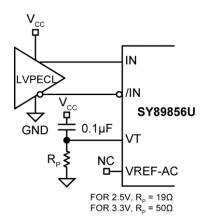


Figure 5. DC-Coupled LVPECL Input Interface

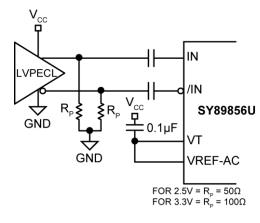


Figure 6. AC-Coupled LVPECL Input Interface

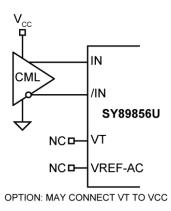


Figure 7. DC-Coupled CML Input Interface

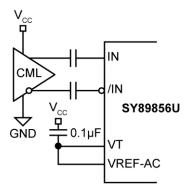


Figure 8. AC-Coupled CML Input Interface

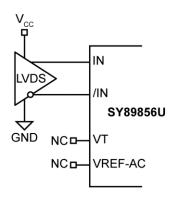


Figure 9. LVDS Input Interface

LVPECL Output Interface Applications

LVPECL has a high input impedance and a very low output impedance (open emitter), and a small signal swing which results in low EMI. LVPECL is ideal for driving 50Ω and 100Ω -controlled impedance transmission

lines. There are several techniques for terminating the LVPECL output: parallel termination-Thevenin equivalent, termination (3-resistor), and AC-coupled termination. Unused output pairs may be left floating. However, single-ended outputs must be terminated or balanced.

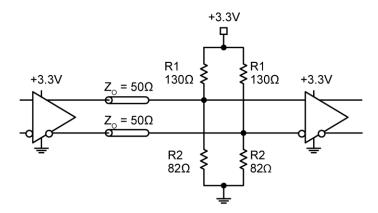


Figure 10. Parallel Termination-Thevenin Equivalent

Note:

12. For 2.5V Systems: R1 = 250Ω , R2 = 62.5Ω .

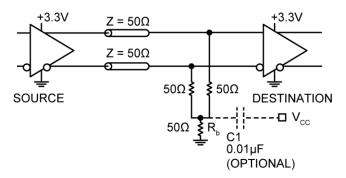


Figure 11. Parallel Termination (3-Resistors)

Notes:

- 13. Power-saving alternative to Thevenin termination.
- 14. Place termination resistors as close to destination inputs as possible.
- 15. R_b resistor sets the DC bias voltage, equal to V_T.
- 16. For 2.5V systems, $R_b = 19\Omega$.

Related Documentation

Part Number	Function	Datasheet Link
SY58035U	4.5GHz, 1:6 LVPECL Fanout Buffer with 2:1 MUX Input and Internal Termination	www.micrel.com/ PDF/HBW/sy58035u.pdf
HBW Solutions	New Products and Applications	www.micrel.com/index.php/en/products/clock-timing/clock-data-distribution.html

Package Information⁽¹⁷⁾

32-Pin QFN (QFN-32)

Note:

17. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.