imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Voltage Ultra-Sharp Knee Zener Diode

DESCRIPTION

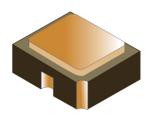
This new multi-layer pn junction Zener design for ultra-sharp knee characteristics is used for low-voltage regulation and very low leakage currents. The new design offers significantly improved voltage regulation and lower dynamic impedance and capacitance compared to conventional Zeners. They also provide ESD protection for those threats defined per IEC 61000-4-2 or electrical fast transients per IEC 61000-4-4 as well as other transient threats. Because of their relatively small physical size and weight, this product is ideal for use in High reliable portable and hand-held electronic devices.

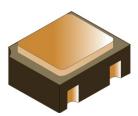
FEATURES

Important: For the latest information, visit our website http://www.microsemi.com.

.

- Ultra-sharp knee, low-voltage Zener
- Excellent Voltage Regulation (4X better than standard Zener diode)
- Lower Zener impedance (1/4 that of standard Zener diode)
- Lower leakage current (about 40X lower than standard Zener diode)
- Lower capacitance
- Small, hermetically sealed, surface mount UB package
- High surge capability
- RoHS compliant versions are available
- ESD Nonsensitive Rating


APPLICATIONS / BENEFITS


- Superior low voltage regulation
- Portables requiring low battery drain
- ESD & EFT protection per IEC 61000-4-2 and IEC 61000-4-4
- Stabistor replacement
- Low voltage transient protection

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	$T_{\rm J}$ and $T_{\rm STG}$	-55 to +150	°C
Thermal Resistance, Junction-to-Solder Pad (Infinite Sink)	R _{OJSP(IS)}	120	ºC/W
Thermal Resistance, Junction-to-Ambient on PC Board ⁽¹⁾	R _{OJA(PCB)}	325	ºC/W
Power Dissipation (see derating graph)	PD	500	mW
Zener Surge Current (8/20 μs)	I _{ZSM}	25	Α
Forward Voltage @ 100 mA	VF	1.00	V
Solder Temperature @ 10 s		260	°C

1. With 0.025 inch² pads (see Figure 2).

UB Package

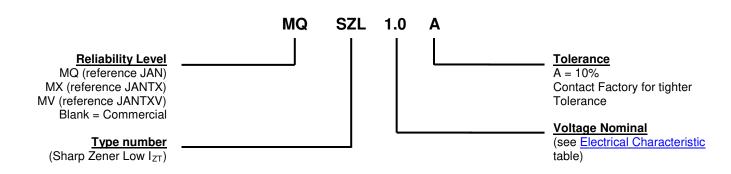
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed ceramic package with metal lid
- TERMINALS: Gold over nickel plating
- MARKING: Device marking code and polarity band
- POLARITY: Pin 1 = cathode; (Pin 2 = not connected); Pin 3 = anode
- TAPE & REEL option: Standard per EIA-481-D. 7 inch diameter reel, 2000 devices max. per reel
- WEIGHT: Approximately 0.042 grams
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS										
Symbol	Definition									
ανΖ	Temperature Coefficient of Regulator Voltage: The change in regulator voltage divided by the change in temperature that caused it expressed in %/C or mV/°C.									
Ст	Total Capacitance: The total small signal capacitance between the diode terminals of a complete device.									
I _R	Reverse Current: The dc current flowing from the external circuit into the cathode terminal at the specified voltage V _R .									
I _{ZT}	Regulator Current: The dc regulator current (I_Z) , at a specified test point (I_{ZT}) .									
Vz	Zener Voltage: The Zener voltage the device will exhibit at a specified current (Iz) in its breakdown region.									
Z _{ZT}	The measured Zener impedance at the specified test current (I_{ZT}) .									

PART NUMBER	NOMINAL VOLTAGE Vz @ Izt	TEST CURRENT Ι _{ΖΤ} (Note 5)	MAXIMUM ZENER IMPEDANCE @ I _{zt}	I _R V _R		MAXIMUM TOTAL CAPACITANCE C _T f = 1 MHz @ 0 volts	MAXIMUM MAGNITUDE TEMPERATURE COEFFICIENT OF ZENER VOLTAGE	MAXIMUM REGULATION FACTOR △Vz (Note 4)
							α _{vz}	
	Volts	mA	Ohms	μA	Volts	pF	% / °C	Volts
SZL1.0A	1.0	0.25	325	0.05	0.3	150	-0.17	0.35
SZL1.1A	1.1	0.25	325	0.05	0.4	150	-0.17	0.35
SZL1.2A	1.2	0.25	325	0.05	0.4	150	-0.16	0.35
SZL1.3A	1.3	0.25	325	0.05	0.5	150	-0.16	0.35
SZL1.4A	1.4	0.25	325	0.05	0.5	150	-0.15	0.35
SZL1.5A	1.5	0.25	325	0.05	0.6	150	-0.15	0.35
SZL1.6A	1.6	0.25	325	0.05	0.6	150	-0.14	0.35
SZL1.7A	1.7	0.25	325	0.05	0.7	150	-0.13	0.35
SZL1.8A	1.8	0.25	325	0.05	0.8	150	-0.12	0.35
SZL1.9A	1.9	0.25	325	0.05	0.9	150	-0.12	0.35
SZL2.0A	2.0	0.25	325	0.05	1.1	150	011	0.35
SZL2.2A	2.2	0.25	325	0.05	1.1	150	010	0.35
SZL2.4A	2.4	0.25	325	0.05	1.2	150	010	0.35

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted

NOTE:

1. ZENER (V_z) VOLTAGE MEASUREMENT: Nominal Zener voltage is measured with the device junction in thermal equilibrium with ambient temperature of 25 °C at the test current (I_{ZT}) shown.

2. ZENER IMPEDANCE (Z_{ZT}): The Zener impedance is derived from the 60 Hz voltage, which results when an ac current having a rms value equal to 10% of the dc Zener current (I_{ZT}) is superimposed on I_{ZT} .

3. REVERSE CURRENT (I_R): Reverse (leakage) current is guaranteed and measured at V_R as shown on the table.

4. MAXIMUM REGULATION FACTOR (ΔV_z): ΔV_z is the maximum difference between V_z at $I_z = 0.025$ mA and V_z at $I_z = 2.5$ mA

5. MAXIMUM ZENER CURRENT (I_{ZM}) should be based on 500 mW maximum power dissipation rating in conjunction with derating based on mounted thermal resistance divided by V_Z based on nominal V_Z modified for V_Z I_Z trend shown in Figure 4a-c.

GRAPHS

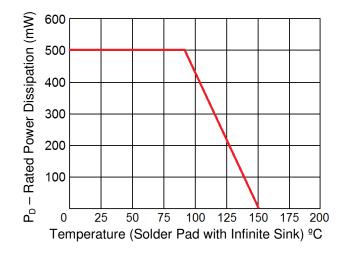
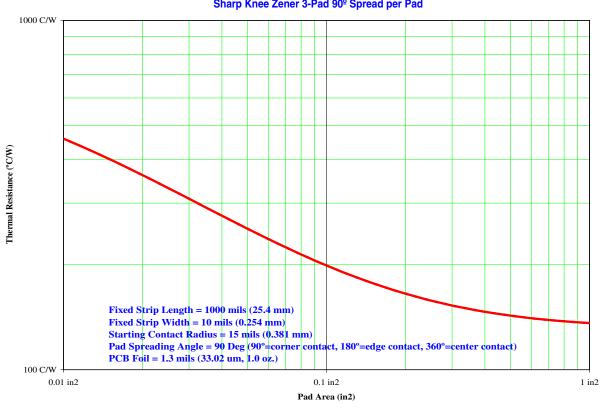
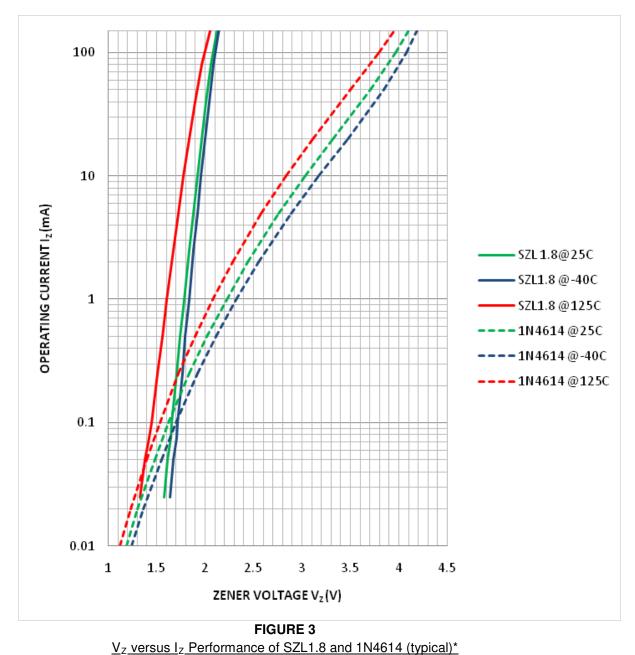



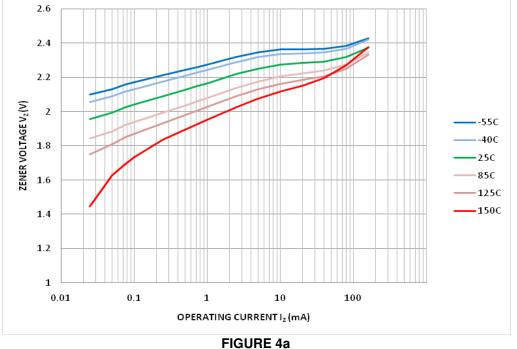
FIGURE 1 Power Derating Curve R_{0JSP(IS)} (see Figure 2 for alternate PCB mounting)



Total Mounted Device Thermal Resistance vs Each Terminal Pad Size Sharp Knee Zener 3-Pad 90° Spread per Pad

FIGURE 2

Thermal Resistance Junction to Ambient vs. Bond Pad Size (3 pads)



* Note: Comparison of typical industry standard Zener Diode (1N4614) and Microsemi's SZL series. Both parts have

a nominal $V_z = 1.8$ V rating at 0.25 mA

ZENER VOLTAGE vs. OPERATING CURRENT vs. TEMPERATURE - SZL2.2A (typical)

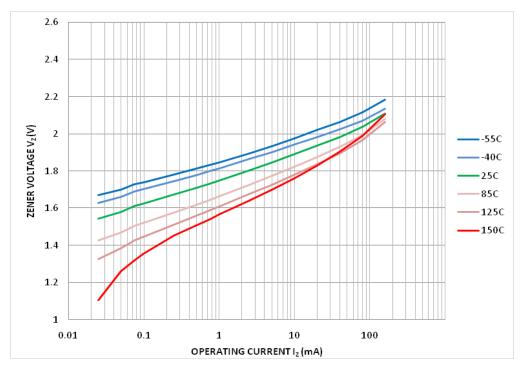
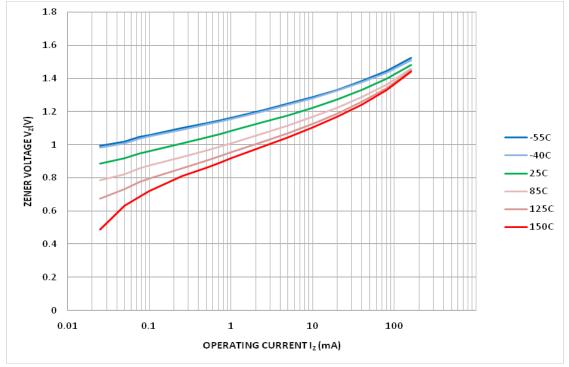
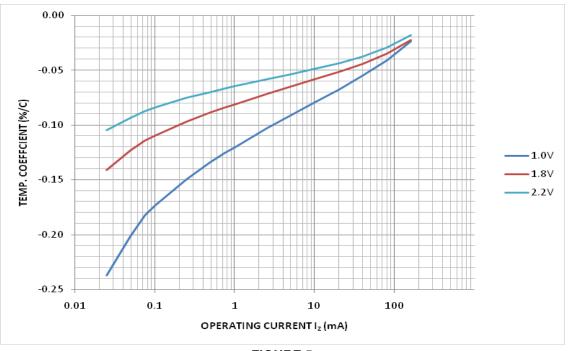
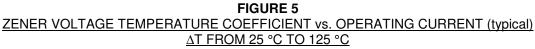
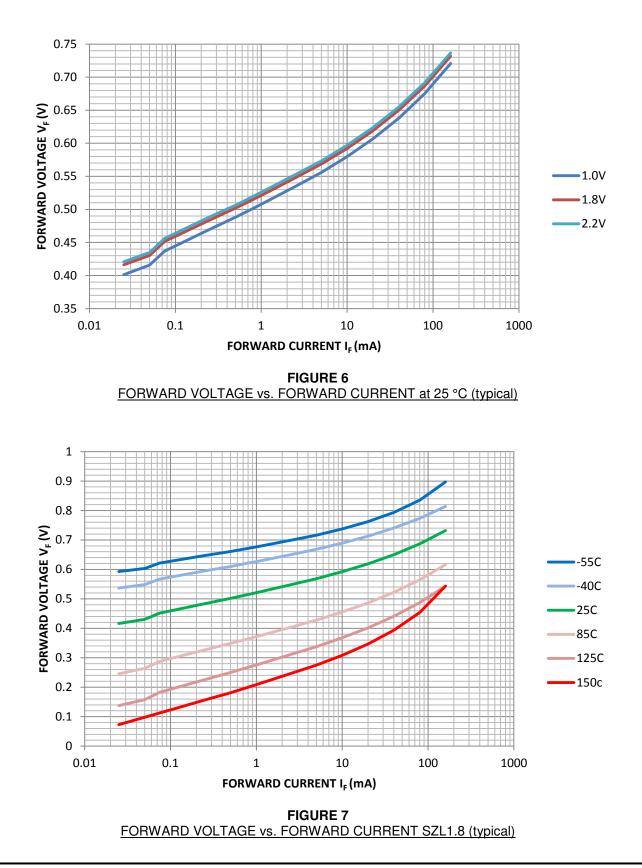
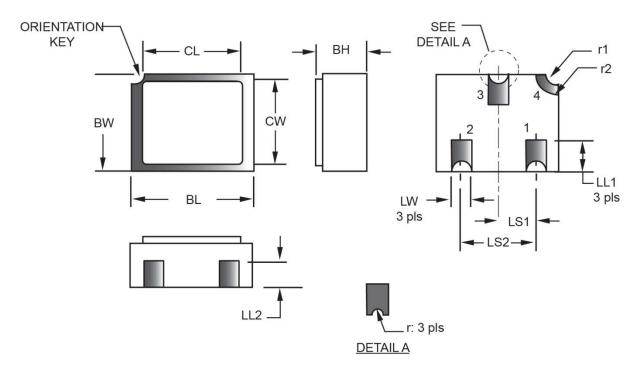


FIGURE 4b ZENER VOLTAGE vs. OPERATING CURRENT vs. TEMPERATURE - SZL1.8A (typical)


FIGURE 4c

ZENER VOLTAGE vs. OPERATING CURRENT vs. TEMPERATURE - SZL1.0A (typical)



PACKAGE DIMENSIONS

Symbol	Dimensions						Dimensions				
	inch		millimeters		Note	Symbol	inch		millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	0.046	0.056	1.17	1.42		LS1	0.035	0.040	0.89	1.02	
BL	0.115	0.128	2.92	3.25		LS2	0.071	0.079	1.80	2.01	
BW	0.095	0.108	2.41	2.74		LW	0.016	0.024	0.41	0.61	
CL	-	0.128	-	3.25		r	-	0.008	-	0.20	
CW	-	0.108	-	2.74		r1	-	0.012	-	0.30	6
LL1	0.022	0.038	0.56	0.97		r2	-	0.022	-	0.056	
LL2	0.014	0.035	0.356	0.89							

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. Ceramic package only.
- 3. Hatched areas on package denote metalized areas.
- 4. Pad 1 = Cathode, Pad 2 = not used, Pad 3 = Anode, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 6. For reference only.

SCHEMATIC

PAD ASSIGNMENTS: 1 = Cathode, 2 = Not Used, 3 = Anode, 4 = Shielding Connected to Lid