imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

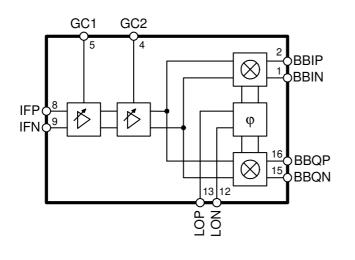
Features

- · Gain control in 20-dB steps
- Very low I/Q amplitude and phase errors
- High input P1dB
- Buffered IF OUT available through baseband output

Applications

- Infrastructure digital communication systems
- GSM/cellular transceivers
- ISM band transceivers

Electrostatic sensitive device. Observe precautions for handling.



Description

The T0797 is a multi-purpose demodulator RFIC. The silicon monolithic integrated circuit is a designed in Atmels advanced SiGe technology. This demodulator is capable of both quadrature demodulation or direct IF output. Features include switchable gain control on a frequency range from 65 MHz to 300 MHz. The device performs a very low amplitude as well as phase error and allows high input P1dB. The T0797 targets a variety of system applications for communications including 3G wireless.

Block Diagram

Figure 1.

(GE

65 - 300 MHz SiGe IF Receiver / Demodulator

T0797

Rev. A2, 03-Dec-01

Ordering Information

Extended Type Number	Package	Remarks		
T0797	TSSOP16			

Pin Configuration

Figure 2.

BBIN	10	16	
BBIP	2	15	BBQN
VCC	3	14	b vcc
GC2	4	13	LOP
GC1	5	12	LON
GND	6	11	GND
VCC	7	10	⊐ vcc
IFP	8	9	

Pin Description

Pin	Symbol	Function
1	BBIN	Baseband I-axis negative output
2	BBIP	Baseband I-axis positive output
3	VCC	5 V power supply
4	GC2	Gain control input, stage 2
5	GC1	Gain control input, stage 1
6	GND	Ground
7	VCC	5 V power supply
8	IFP	IF positive input
9	IFN	IF negative input
10	VCC	5 V power supply
11	GND	Ground
12	LON	Local oscillator, negative input
13	LOP	Local oscillator, positive input
14	VCC	5 V power supply
15	BBQN	Baseband Q-axis negative output
16	BBQP	Baseband Q-axis positive output

Absolute Maximum Ratings

All voltages are referred to GND.

Parameter	Symbol	Value	Unit
Supply voltage	V _{CC}	5.5	V
LO input	LOP, LON	10	dBm
IF input	IFN, IFP	10	V
Operating temperature	T _{OP}	-40 to +85	°C
Storage temperature	T _{stg}	-65 to +150	°C

Note: The part may not survive all maximums applied simultaneously

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction ambient	R _{thJA}	tbd	K/W

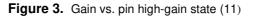
Electrical Characteristics

Test conditions: $V_{CC} = 5 \text{ V}$, $T_{amb} = 25^{\circ}\text{C}$, LO input: 0 dBm@200 MHz IF input: @200.1 MHz, GC1 = 0, GC2 = 0; 0 dBm IF input: @200.1 MHz, GC1 = 1, GC2 = 0; -20 dBm

IF input: @200.1 MHz, GC1 = 1, GC2 = 1; -40 dBm

It (I/Q mixing ency range loss	to baseband)	8, 9	f	65				
		8, 9	f	65				
loss		1		05	120 - 220	300	MHz	В
		8, 9	RL		20		dB	D
	Gain set = high; GC1	8, 9	G		35		dB	А
'1dB	= GC2 = 1	8, 9	P1dB		-30		dBm	С
23		8, 9	IIP3		-20		dBm	В
igure		8, 9	NF		6		dB	D
	Gain set = high; GC1	8, 9	G		15		dB	А
'1dB	= 1; GC2 = 0	8, 9	P1dB		-10		dBm	С
23		8, 9	IIP3		0		dBm	В
igure		8, 9	NF	-3	10		dB	D
	Gain set = high; GC1	8, 9	G		-5		dB	А
'1dB	= GC2 = 0	8, 9	P1dB		10		dBm	С
23		8, 9	IIP3		20		dBm	В
igure		8, 9	NF		30		dB	D
-3	re	re	8,9 8,9 8,9	re 8, 9 NF	8,9 IIP3 re 8,9 NF	8,9 IIP3 20 re 8,9 NF 30	8,9 IIP3 20 re 8,9 NF 30	8,9 IIP3 20 dBm

Preliminary Information



Electrical Characteristics

Test conditions: $V_{CC} = 5 \text{ V}$, $T_{amb} = 25^{\circ}\text{C}$, LO input: 0 dBm@200 MHz IF input: @200.1 MHz, GC1 = 0, GC2 = 0; 0 dBm IF input: @200.1 MHz, GC1 = 1, GC2 = 0; -20 dBm IF input: @200.1 MHz, GC1 = 1, GC2 = 1; -40 dBm

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
2	Stuck Mixer (DC to LO port – gain-controlled amplifier)								
2.1	Frequency range		8, 9	f	65	120 - 220	300	MHz	В
2.2	Return loss		8, 9	RL		20		dB	D
2.3	Gain	Gain set = high;	8, 9	G		40		dB	Α
2.4	Input P1dB	GC1 = GC2 = 1	8, 9	P1dB		-26		dBm	С
2.5	Input IP3		8, 9	IIP3		-16		dBm	В
2.6	Noise figure	-	8, 9	NF		6		dB	D
2.7	Gain	Gain set = high;	8, 9	G		20		dB	Α
2.8	Input P1dB	GC1 = 1; GC2 = 0	8, 9	P1dB		-6		dBm	С
2.9	Input IP3	-	8, 9	IIP3		4		dBm	В
2.10	Noise figure		8, 9	NF		9		dB	D
2.11	Gain	Gain set = high;	8, 9	G		0		dB	Α
2.12	Input P1dB	GC1 = GC2 = 0	8, 9	P1dB		14		dBm	С
2.13	Input IP3	-	8, 9	IIP3		24		dBm	В
2.14	Noise figure	-	8, 9	NF		30		dB	D
3	I/Q Output								
3.1	I/Q output frequency range		1, 2, 15, 16	f _{I/Q}	DC		500	MHz	D
3.2	I/Q output amplitude error		1, 2, 15, 16		-0.2		+0.2	dB	Α
3.3	I/Q phase error		1, 2, 15, 16		-2		+2	deg	Α
3.4	I/Q output common mode voltage		1, 2, 15, 16			2.5		V	A
3.5	I/Q output differential offset voltage		1, 2, 15, 16	V _{offset}			10	mV	A
4	LO input		-++		ł	ł	ł		1
4.1	LO input level		12, 13	PLO	-3	0	+3	dBm	D
4.2	Return loss		12, 13	RLLO		20		dB	D
5	Miscellaneous		- I		1	1	1	1	1
5.1	Supply voltage		3, 7, 10, 14	V _{CC}	4.75	5	5.25	V	A
5.2	Supply current	ly current		ICC		180		mA	Α

Typical Device Performance

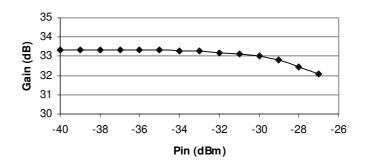
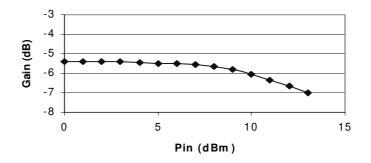
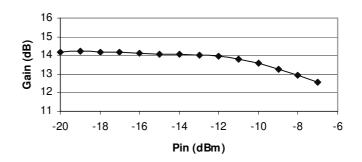
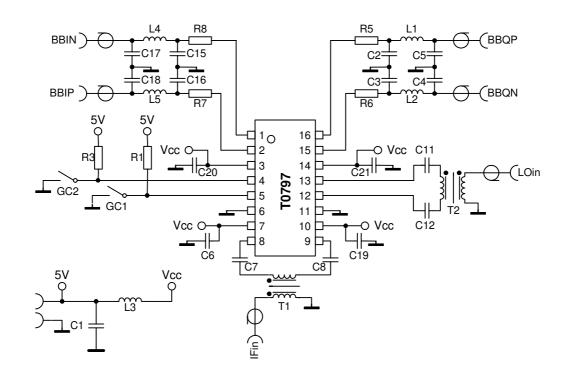


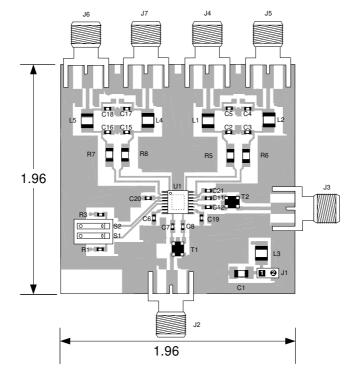
Figure 4. Gain vs. pin low-gain state (00)


Figure 5. Gain vs. pin medium-gain state (10)

Demo Test Board Schematic

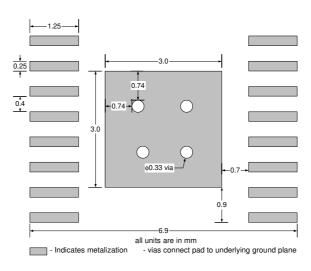
Figure 6.


Bill of Materials

Component Designator	Value	Vendor	Part Number	Description
D1		Atmel	T0797	IF receiver
J2, J3, J4, J5, J6, J7		Johnson Components	142-0701-851	SMA end launch connector
T1, T2		Mini-Circuits	TC1-1	Transformer
C1	1uF			1206 size supply bypass capacitor
R1, R3	1 kohm			0603 size
C6, C19, C20, C21	1nF			0603 size
L1, L2, L3, L4, L5	1uH			1210 size
C7, C8, C11, C12	68pF			0603 size
R5, R6, R7, R8	0 Ohm			1206 size
C2, C3, C4, C5, C15, C16, C17, C18	820pF			0603 size

6 (10) T0797 I

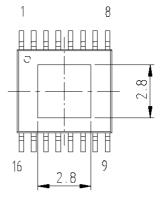
Demo Test Board (Fully Asembled PCB)


Figure 7.

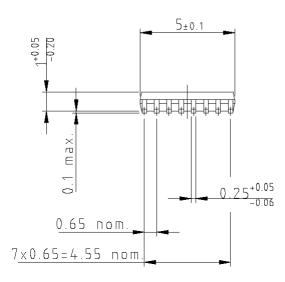
Note: Dimensions in inches

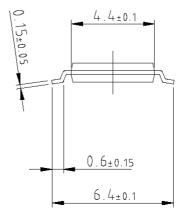
Recommended Package Footprint

Figure 8.



Remark: Heatslug must be soldered to GND


Package Information



Package: SSOP16 (acc. JEDEC SMALL OUTLINE No. MO-153) Dimensions in mm

8 (10) **T0797**

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

Atmel Sales Offices

France

3, Avenue du Centre 78054 St.-Quentin-en-Yvelines Cedex Tel: +33 1 30 60 70 00 Fax: +33 1 30 60 71 11

Germany

Erfurter Strasse 31 85386 Eching Tel: +49 89 319 70 0 Fax: +49 89 319 46 21

Kruppstrasse 6 45128 Essen Tel: +49 201 247 30 0 Fax: +49 201 247 30 47

Theresienstrasse 2 74072 Heilbronn Tel: +49 7131 67 36 36 Fax: +49 7131 67 31 63

Italy

Via Grosio, 10/8 20151 Milano Tel: +39 02 38 03 71 Fax: +39 02 38 03 72 34

Spain

Principe de Vergara, 112 28002 Madrid Tel: +34 91 564 51 81 Fax: +34 91 562 75 14

Sweden

Kavallerivaegen 24, Rissne 17402 Sundbyberg Tel: +46 8 587 48 800 Fax: +46 8 587 48 850

United Kingdom Easthampstead Road Bracknell Berkshire RG12 1LX Tel: +44 1344 707 300 Fax: +44 1344 427 371

USA Western 2325 Orchard Parkway San Jose, California 95131 Tel: +1 408 441 0311 Fax: +1 408 436 4200

USA Eastern 1465 Route 31, Fifth floor Annandale New Jersey 08801 Tel: +1 908 848 5208 Fax: +1 908 848 5232

Hong Kong Room #1219, Chinachem Golden Plaza 77 Mody Road, Tsimhatsui East East Kowloon, Hong Kong Tel: +852 23 789 789 Fax: +852 23 755 733

Korea

25-4, Yoido-Dong, Suite 605, Singsong Bldg. Youngdeungpo-Ku 150-010 Seoul Tel: +822 785 1136 Fax: +822 785 1137

Rep. of Singapore Keppel Building #03-00 25 Tampines Street 92, Singapore 528877 Tel: +65 260 8223 Fax: +65 787 9819

Taiwan, R.O.C.

8F-2, 266 Sec.1 Wen Hwa 2 Rd. Lin Kou Hsiang, 244 Taipei Hsien Tel: +886 2 2609 5581 Fax: +886 2 2600 2735

Japan

Tonetsushinkawa Bldg. 1-24-8 Shinkawa Chuo Ku Tokyo 104-0033 Tel: +81 3 3523 3551 Fax: +81 3 3523 7581

Web Site http://www.atmel-wm.com

© Atmel Germany GmbH 2001.

Atmel Germany GmbH makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel Germany GmbH's Terms and Conditions. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel Germany GmbH are granted by the Company in connection with the sale of Atmel Germany GmbH products, expressly or by implication. Atmel Germany GmbH's products are not authorized for use as critical components in life support devices or systems.

Data sheets can also be retrieved fron the Internet: http://www.atmel-wm.com