

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

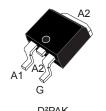
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

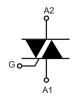
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





16 A logic level (sensitive) Triac

Features

- High static dV/dt
- High dynamic turn-off commutation (dl/dt)c
- 150 °C maximum junction temperature
- Three quadrants
- Surge capability V_{DSM}, V_{RSM} = 900 V
- · Benefits:
 - High immunity to false turn-on thanks to high static dV/dt
 - Better turn-off in high temperature environments thanks to (dl/dt)c
 - Increase of thermal margin due to extended working T_i up to 150 °C
 - Good thermal resistance due to non-insulated tab.

Applications

- · General purpose AC line load switching
- · Motor control circuits
- · Home appliances
- Heating
- Lighting
- · Inrush current limiting circuits
- · Overvoltage crowbar protection

Product status link

T1610T-8G

Product summary				
I _{T(RMS)}	16 A			
V _{DRM} /V _{RRM}	800 V			
V _{DSM} /V _{RSM} 900 V				
I _{GT}	10 mA			

Description

Available in SMD, the T1610T-8G Triac can be used for the on/off or phase angle control function in general purpose AC switching where high commutation capability is required. This device can be used without a snubber RC circuit when the limits defined are respected.

D²PAK Package is UL-94,V0 flammability resin compliance.

Package environmentally friendly Ecopack®2 graded (RoHS and Halogen Free compliance).

Snubberless™ is a trademark of STMicroelectronics.

1 Characteristics

Table 1. Absolute maximum ratings (limiting values), $T_j = 25$ °C unless otherwise specified

Symbol	Parameter		Value	Unit
\/\/\/	Departitive models off state vallages (FO CO LIE)	T _j = 125 °C	800	V
V _{DRM} /V _{RRM}	Repetitive peak off-state voltage (50-60 Hz)	T _j = 150 °C	600	V
V _{DSM} /V _{RSM}	Non Repetitive peak off-state voltage	t _p = 10 ms, T _j = 25 °C	900	V
I _{T(RMS)}	RMS on-state current (full sine wave)	T _c = 126 °C	16	Α
I	Non repetitive surge peak on-state current (full cycle, T _i initial = 25	t = 16.7 ms	126	Α
ITSM	°C	t = 20 ms	120	
l ² t	I ² t value for fusing	t _p = 10 ms	95	A ² s
dl/dt	Critical rate of rise of on-state current, $I_G = 2 \times I_{GT}$, $tr \le 100 \text{ ns}$ $f = 100 \text{ Hz}$		100	A/µs
I _{GM}	Peak gate current	t _p = 20 μs, T _i = 150 °C	4	Α
V_{GM}	Peak Gate Voltage	ι _p – 20 μs, τ _j – 130 °C	5	V
P _{G(AV)}	Average gate power dissipation $T_j = 150 ^{\circ}\text{C}$		1	W
T _{stg}	Storage junction temperature range	-40 to +150	°C	
Tj	Operating junction temperature range	-40 to +150	°C	

Table 2. Electrical characteristics (T_j = 25 °C, unless otherwise specified)

Symbol	Test conditions		Quadrants; T _j		Value	Unit
I _{GT} ⁽¹⁾	$V_D = 12 \text{ V}, R_L = 30 \Omega$		1 - 11 - 111	Max.	10	mA
V _{GT}	$V_D = 12 \text{ V}, R_L = 30 \Omega$		1 - 11 - 111	Max.	1.3	V
V _{GD}	$V_D = 800 \text{ V}, R_L = 3.3 \text{ k}\Omega$	T _j = 125 °C	1 - 11 - 111	Min.	0.2	V
IL	I _G = 1.2 x I _{GT}		1 - 111	Max.	20	mA
"L	$I_G = 1.2 \times I_{GT}$		II	Max.	30	mA
IH (2)	I _T = 500 mA, gate open		Max.	25	mA	
dV/dt (2)	V _D = 536 V, gate open		T _j = 125 °C	Min.	100	V/µs
av/at (=/	V _D = 402 V, gate open		T _j = 150 °C	Min.	50	V/µs
	(1)(1)		T _j = 125 °C	Min.	9	A/ms
(dl/dt)c (2)	$(dV/dt)c = 0.1 V/\mu s$	T _j = 150 °C	IVIII I.	5.4	AVIIIS	
(ui/ut)C (=/	(dV/dt)c = 10 V/μs		T _j = 125 °C	Min.	3	A/ms
			T _j = 150 °C	IVIII I.	1.8	AVIIIS

^{1.} Minimum I_{GT} is guaranteed at 5% of I_{GT} max

DS12532 - Rev 2 page 2/11

^{2.} For both polarities of A2 referenced to A1.

Table 3. Static characteristics

Symbol	Test conditions	Tj		Value	Unit
V _{TM} ⁽¹⁾	$I_T = 22.6 \text{ A}, t_p = 380 \ \mu\text{s}$	25 °C	Max.	1.55	V
V _{TO} ⁽¹⁾	Threshold on-state voltage	150 °C	Max.	0.85	V
R _D ⁽¹⁾	Dynamic resistance	150 °C	Max.	34	mΩ
	V _{DRM} = V _{RRM} = 800 V	25 °C	Max.	5	μA
I_{DRM}/I_{RRM}	VDRM - VRRM - 5000 V	125°C	IVIAX.	1.0	mA
	V _{DRM} = V _{RRM} = 600 V	150 °C	Max.	3.6	mA

^{1.} For both polarities of A2 referenced to A1.

Table 4. Thermal resistance

Symbol	Parameter	Value	Unit		
R _{th(j-c)}	Junction to case (AC)	D²PAK	Max.	1.15	°C/W

DS12532 - Rev 2 page 3/11

1.2 Characteristics (curves)

Figure 1. Maximum power dissipation versus on-state RMS current

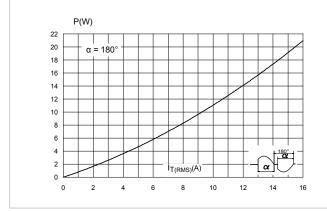


Figure 2. On-state RMS current versus case temperature

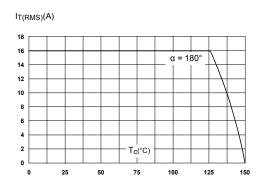


Figure 3. On-state RMS current versus ambient temperature (free air convection)

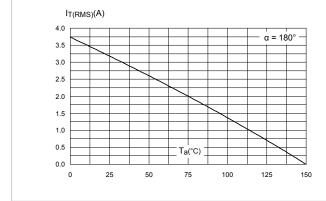


Figure 4. Relative variation of thermal impedance versus pulse duration

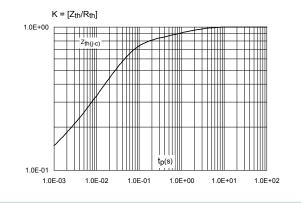


Figure 5. Relative variation of gate trigger voltage and current versus junction temperature (typical values)

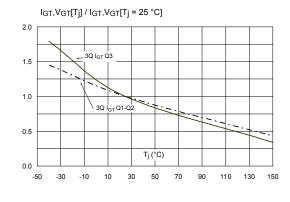
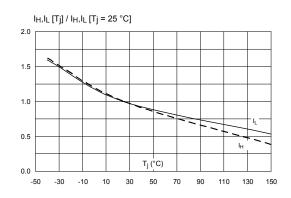



Figure 6. Relative variation of holding current and latching current versus junction temperature (typical values)

DS12532 - Rev 2 page 4/11

Figure 7. Surge peak on-state current versus number of cycles

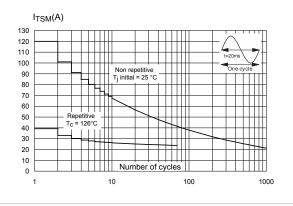


Figure 8. Non repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms

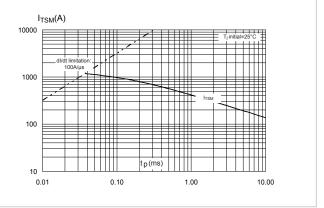


Figure 9. On-state characteristics (maximum values)

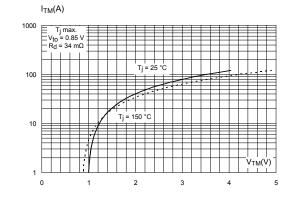


Figure 10. Relative variation of critical rate of decrease of main voltage versus junction temperature

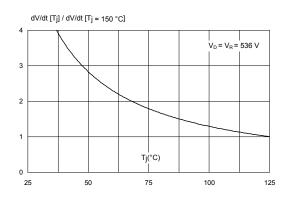


Figure 11. Relative variation of critical rate of decrease of main current versus junction temperature (typical values)

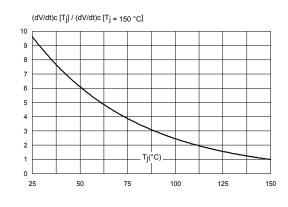
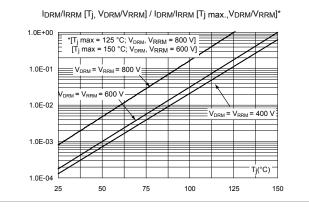
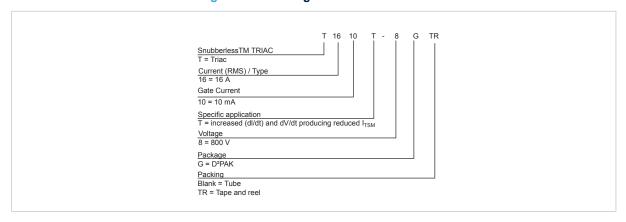



Figure 12. Relative variation of leakage current versus junction temperature for different values of blocking voltage



DS12532 - Rev 2 page 5/11

2 Ordering information

Figure 13. Ordering information scheme

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
T1610T-8G-TR	T1610T-8G	D²PAK	1 20 a	1000	Tape and reel
T1610T-8G	110101-00	DPAK	1.38 g	50	Tube

DS12532 - Rev 2 page 6/11

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

3.1 D²PAK package information

- ECOPACK2® compliant
- · Lead-free package leads finishing
- Molding compound resin is halogen-free and meets UL standard level V0

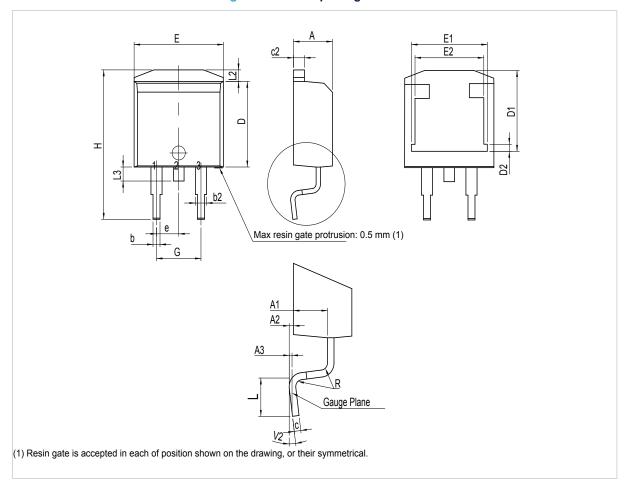


Figure 14. D²PAK package outline

DS12532 - Rev 2 page 7/11

Table 6. D²PAK package mechanical data

	Dimensions						
Ref.		Millimeters					
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	4.30		4.60	0.1693		0.1811	
A1	2.49		2.69	0.0980		0.1059	
A2	0.03		0.23	0.0012		0.0091	
A3		0.25			0.0098		
b	0.70		0.93	0.0276		0.0366	
b2	1.25		1.7	0.0492		0.0669	
С	0.45		0.60	0.0177		0.0236	
c2	1.21		1.36	0.0476		0.0535	
D	8.95		9.35	0.3524		0.3681	
D1	7.50		8.00	0.2953		0.3150	
D2	1.30		1.70	0.0512		0.0669	
е		2.54			0.1		
Е	10.00		10.28	0.3937		0.4047	
E1	8.30		8.70	0.3268		0.3425	
E2	6.85		7.25	0.2697		0.2854	
G	4.88		5.28	0.1921		0.2079	
Н	15		15.85	0.5906		0.6240	
L	1.78		2.28	0.0701		0.0898	
L2	1.27		1.40	0.0500		0.0551	
L3	1.40		1.75	0.0551		0.0689	
R		0.40			0.0157		
V22	0°		8°	0°		8°	

^{1.} Dimensions in inches are given for reference only

DS12532 - Rev 2 page 8/11

^{2.} Degrees

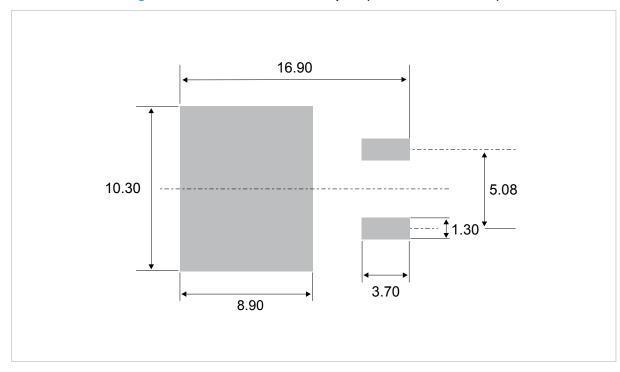
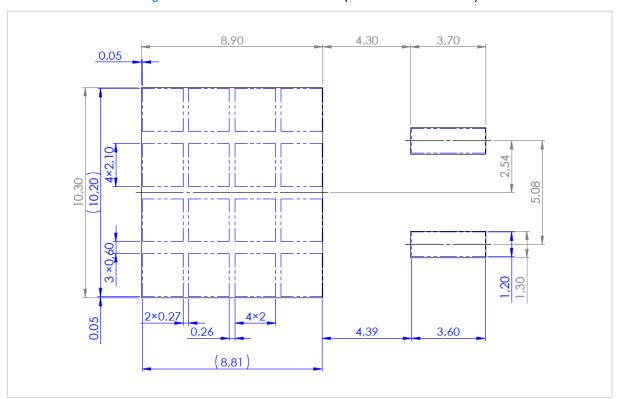



Figure 15. D²PAK recommended footprint (dimensions are in mm)

DS12532 - Rev 2 page 9/11

Revision history

Table 7. Document revision history

Date	Version	Changes
03-Apr-2018	1	Initial release.
17-Jul-2018	2	Updated Table 2. Electrical characteristics (T_j = 25 °C, unless otherwise specified).

DS12532 - Rev 2 page 10/11

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12532 - Rev 2 page 11/11