

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

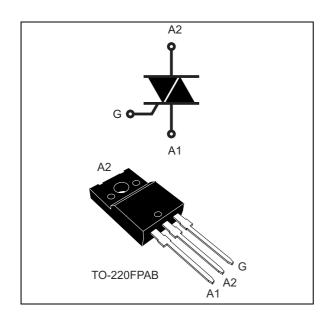
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



6 A logic level Triac

Datasheet - production data

Description

Available in through-hole fullpack package, the T610T-8FP Triac can be used for the on/off or phase angle control function in general purpose AC switching. This device can be directly driven by a microcontroller thanks to its 10 mA gate current requirement. Provide UL certified insulation rated at 2000 VRMS.

Table 1. Device summary

Symbol	Value	Unit
I _{T(rms)}	6	Α
V_{DRM}, V_{RRM}	800	V
V _{DSM} , V _{RSM}	900	V
I _{GT}	10	mA

Features

- Medium current Triac
- Three triggering quadrants Triac
- ECOPACK®2 compliant component
- Complies with UL standards (File ref: E81734)
- 6 A high performance Triac:
 - High T_i family
 - High dl/dt family
 - High dV/dt family
- Insulated package TO-220FPAB:
 - Insulated voltage: 2000 VRMS

Applications

- · General purpose AC line load switching
- · Motor control circuits
- Small home appliances
- Lighting
- Inrush current limiting circuits
- Overvoltage crowbar protection

Characteristics T610T-8FP

1 Characteristics

Table 2. Absolute maximum ratings ($T_i = 25$ °C unless otherwise stated)

Symbol	Paramete	Value	Unit		
I _{T(rms)}	On-state rms current (full sine wave)	T _c = 117 °C	6	Α
l	Non repetitive surge peak on-state	F = 50 Hz	t = 20 ms	45	Α
I _{TSM}	current (full cycle, T _j initial = 25 °C)	F = 60 Hz	t = 16.7 ms	47	^
l ² t	I^2 t value for fusing, T_j initial = 25 °C		t _p = 10 ms	13	A ² s
V _{DRM} ,	Popotitivo curgo poak off stato volta	90	T _j = 150 °C	600	V
V_{RRM}	nepetitive surge peak oil-state voita	Repetitive surge peak off-state voltage		800	V
V _{DSM} , V _{RSM}	Non repetitive surge peak off-state v	repetitive surge peak off-state voltage		900	V
dI/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$	1 L = 100 Hz		100	A/μs
I_{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	Α
P _{G(AV)}	Average gate power dissipation		T _j = 150 °C	1	W
T _{stg} T _j	Storage junction temperature range Operating junction temperature range		- 40 to + 150 - 40 to + 150	°C	
T _L	Maximum lead temperature for soldering during 10 s		260	°C	
V _{ins}	Insulation rms voltage, 1 minute			2	kV

Table 3. Electrical characteristics (T $_{\rm j}$ = 25 °C, unless otherwise stated)

Symbol	Test conditions	Quadrant		Value	Unit
	V 10 V B 20 O	1 - 11 - 111	Min.	0.5	mA
I _{GT}	$V_D = 12 \text{ V}, R_L = 30 \Omega$	1 - 11 - 111	Max.	10	
V _{GT}	$V_D = 12 \text{ V}, R_L = 30 \Omega$	1 - 11 - 111	Max.	1.3	V
V _{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k} \Omega, T_j = 150 \text{ °C}$	1 - 11 - 111	Min.	0.2	V
I _H ⁽¹⁾	I _T = 500 mA		Max.	15	mA
1	1.121	1 - 111	Max.	20	mA
IL	$I_{G} = 1.2 I_{GT}$	II	Max.	25	mA
dV/dt ⁽¹⁾	$V_D = V_R = 536 \text{ V}, \text{ gate open}$	T _j = 125 °C	Min.	250	V/µs
u v/ut · /	V _D = V _R = 402 V, gate open	T _j = 150 °C	IVIII I.	170	V/µs
(dl/dt)c (1)	(a) (/a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (T _j = 125 °C	Min.	5.2	A/ms
(ui/ut)c ·	$(dV/dt)c = 0.1 V/\mu s$	T _j = 150 °C	IVIII I.	3.7	A/IIIS
(dl/dt)c (1)	$(dV/dt)c = 10 V/\mu s$	T _j = 125 °C	Min.	2.7	A/ms
(di/dt)C (1)		T _j = 150 °C	IVIII I.	1.2	

^{1.} For both polarities of A2 referenced to A1

T610T-8FP Characteristics

Table	1	Statio	characteristics	
Table	4.	Sianc	cnaracteristics	š

Symbol	Test conditions			Value	Unit
V _T ⁽¹⁾	$I_{TM} = 8.5 \text{ A}, t_p = 380 \ \mu \text{s}$	T _j = 25 °C	Max.	1.55	V
V _{t0} (1)	Threshold voltage	T _j = 150 °C	Max.	0.85	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 150 °C	Max.	75	mΩ
	V _{DRM} = V _{RRM} = 800 V	T _j = 25 °C	Max.	5	μΑ
I _{DRM}	VDRM = VRRM = 800 V	T _j = 125 °C	iviax.	0.6	mA
IRRM	V _{DRM} = V _{RRM} = 600 V	T _j = 150 °C	Max.	2.0	IIIA

^{1.} For both polarities of A2 referenced to A1

Table 5. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (AC)	4.5	°C/W
R _{th(j-a)}	Junction to ambient (DC)	60	°C/W

Figure 1. Maximum power dissipation versus on-state rms current (full cycle)

8 P(W)
6 4 2 180 17(RMS)(A) 180° 0 1 2 3 4 5 6

Figure 2. On-state rms current versus case temperature (full cycle)

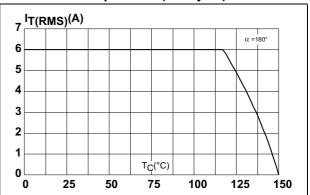


Figure 3. On-state rms current versus ambient temperature (free air convection)

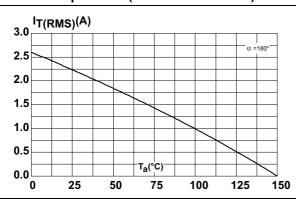
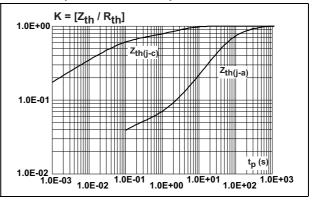



Figure 4. Relative variation of thermal impedance versus pulse duration

Characteristics T610T-8FP

Figure 5. On-state characteristics (maximum values)

100 I_{TM}(A)

100 T_{I,max}:

V_{i,=0.85}V
R_{i,=75} mΩ

V_{TM}(V)

10.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 6. Surge peak on-state current versus number of cycles

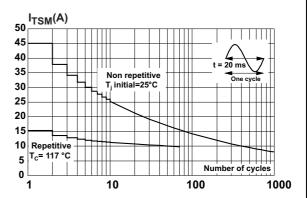


Figure 7. Non repetitive surge peak on-state current and corresponding values of I²t

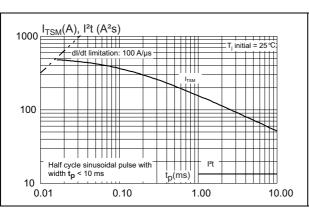


Figure 8. Relative variation of gate trigger current and gate voltage versus junction temperature (typical values)

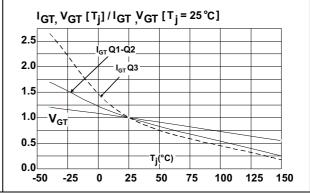
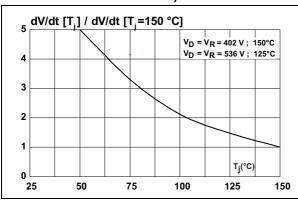
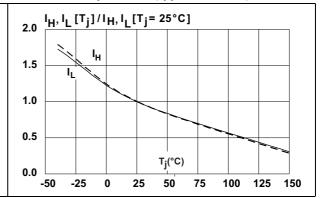
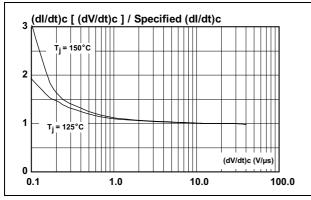


Figure 9. Relative variation of static dV/dt immunity versus junction temperature (typical values)


Figure 10. Relative variation of holding current and latching current versus junction temperature (typical values)

T610T-8FP Characteristics

Figure 11. Relative variation of critical rate of decrease of main current (dl/dt)c versus reapplied (dV/dt)c (typical values)

Figure 12. Relative variation of critical rate of decrease of main current (dl/dt)c versus junction temperature (typical values)

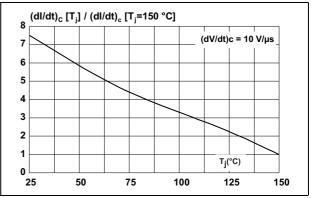
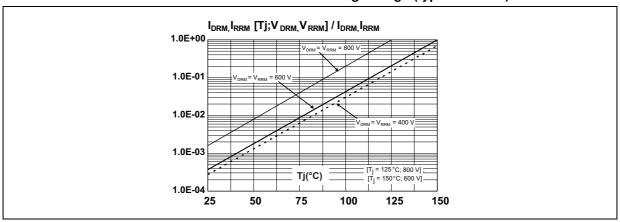



Figure 13. Relative variation of leakage current versus junction temperature for different values of blocking voltage (typical values)

Package information T610T-8FP

2 Package information

- Epoxy meets UL94, V0
- Lead-free package
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

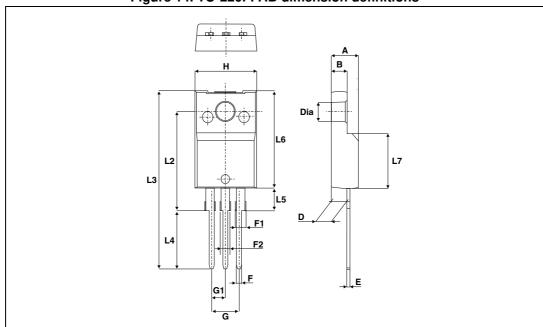
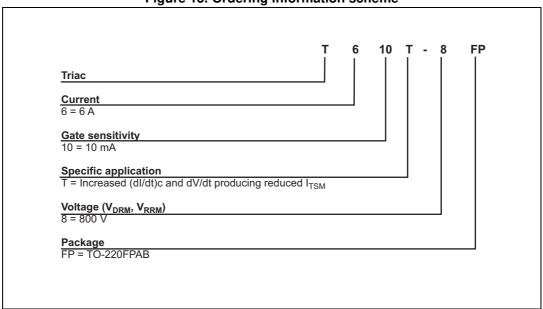


Figure 14. TO-220FPAB dimension definitions

T610T-8FP Package information


Table 6. TO-220FPAB dimensions

	Dimensions				
Ref.	Millin	neters	Inc	hes	
	Min.	Max.	Min.	Max.	
А	4.4	4.6	0.173	0.181	
В	2.5	2.7	0.098	0.106	
D	2.5	2.75	0.098	0.108	
Е	0.45	0.70	0.018	0.027	
F	0.75	1	0.030	0.039	
F1	1.15	1.70	0.045	0.067	
F2	1.15	1.70	0.045	0.067	
G	4.95	5.20	0.195	0.205	
G1	2.4	2.7	0.094	0.106	
Н	10	10.4	0.393	0.409	
L2	16 ⁻	Тур.	0.63	Тур.	
L3	28.6	30.6	1.126	1.205	
L4	9.8	10.6	0.386	0.417	
L5	2.9	3.6	0.114	0.142	
L6	15.9	16.4	0.626	0.646	
L7	9.00	9.30	0.354	0.366	
Dia.	3.00	3.20	0.118	0.126	

Ordering information T610T-8FP

3 Ordering information

Figure 15. Ordering information scheme

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
T610T-8FP	T610T-8FP	TO-220FPAB	2.0 g	50	Tube

4 Revision history

Table 8. Document revision history

Date	Revision	Changes
05-Feb-2014	1	Initial release.
12-Feb-2015	2	Updated Features and Table 2.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

