: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- Single 3-V Supply Voltage
- High Power-added Efficient Power Amplifier ($P_{\text {out }}$ Typically 23 dBm)
- Ramp-controlled Output Power
- Low-noise Preamplifier (NF Typically 2.1 dB)
- Biasing for External PIN Diode T/R Switch
- Current-saving Standby Mode
- Few External Components
- Packages:
- PSSO20
- QFN20 with Extended Performance

Bluetooth ${ }^{\text {TM }} /$ ISM 2.4-GHz FrontEnd IC

Electrostatic sensitive device.
Observe precautions for handling.

Description

The T7024 is a monolithic SiGe transmit/receive front-end IC with power amplifier, low-noise amplifier and T/R switch driver. It is especially designed for operation in TDMA systems like Bluetooth ${ }^{\text {TM }}$ and WDCT.
Due to the ramp-control feature and a very low quiescent current, an external switch transistor for V_{S} is not required.

Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning PSSO20

Figure 3. Pinning QFN20

Pin Description

Pins PSSO20	Pins QFN20	Symbol	Function
1	4	R_SWITCH	Resistor to GND sets the PIN diode current
2	5	SWITCH_OUT	Switched current output for PIN diode
3	6	GND	Ground
4	7	LNA_IN	Low-noise amplifier input
5	9	VS_LNA	Supply voltage input for low-noise amplifier
6	8	GND	Ground
7	11	V3_PA_OUT	Inductor to power supply and matching network for power amplifier output
8	12	V3_PA_OUT	Inductor to power supply and matching network for power amplifier output
9	13	V3_PA_OUT	Inductor to power supply and matching network for power amplifier output
10	10	GND	Ground
11	15	RAMP	Power ramping control input
12	16	V2_PA	Inductor to power supply for power amplifier
13	17	V2_PA	Inductor to power supply for power amplifier
14	14	GND	Ground
15	19	V1_PA	Supply voltage for power amplifier
16	20	PA_IN	Power amplifier input
17	18	GND	Ground
18	1	LNA_OUT	Low-noise amplifier output
19	2	RX_ON	RX active high
20	3	PU	Power-up active high
Slug	Slug	GND	Ground

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage Pins VS_LNA, V1_PA, V2_PA, V3_PA_OUT	V_{S}	6	V
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
RF input power LNA	$\mathrm{P}_{\text {inLNA }}$	5	dBm
RF input power PA	$\mathrm{P}_{\text {inPA }}$	10	dBm

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient PSSOP20, slug soldered on PCB	$\mathrm{R}_{\mathrm{thJA}}$	19	$\mathrm{~K} / \mathrm{W}$
Junction ambient QFN20, slug soldered on PCB	$\mathrm{R}_{\mathrm{thJA}}$	27	$\mathrm{~K} / \mathrm{W}$

Do not operate this part near strong electrostatic fields. This IC meets class 1 ESD test requirement (HBM in accordance to EIA/JESD22-A114-A (October 97) and class A ESD test requirement (MM) in accordance to EIA/JESD22-A115A.

Operating Range

All voltages are referred to ground (pins GND and slug). Power supply points are VS_LNA, V1_PA, V2_PA, V3_PA_OUT. The table represents the sum of all supply currents depending on the TX/RX mode.

Parameters	Symbol	Min.	Typ.	Max.	Unit
Supply voltage Pins V1_PA, V2_PA and V3_PA_OUT	V_{S}	2.7	3.0	4.6	V
Supply voltage, pin VS_LNA	V_{S}	2.7	3.0	5.5	V
Supply current TX, PSSO20			190		mA
SFN20	I_{S}		165	mA	
Supply current RX	I_{S}		8	mA	
Standby current, PU =0	I_{S}		10	$\mu \mathrm{~A}$	
Ambient temperature	$\mathrm{I}_{\text {S_standby }}$			${ }^{\circ} \mathrm{C}$	

Electrical Characteristics
Test conditions (unless otherwise specified): $\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Power Amplifier ${ }^{(1)}$						
Supply voltage	Pins V1_PA, V2_PA, V3_PA_OUT	V_{S}	2.7	3.0	4.6	V
Supply current	TX PSSO20 TX QFN20	$\begin{aligned} & \mathrm{I}_{\mathrm{S}_{-} T \mathrm{X}} \\ & \mathrm{I}_{\mathrm{S}_{-}} \end{aligned}$		$\begin{aligned} & 190 \\ & 165 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	RX (PA off), $\mathrm{V}_{\text {RAMP }} \leq 0.1 \mathrm{~V}$	$\mathrm{I}_{\text {S_RX }}$			10	$\mu \mathrm{A}$
Standby current	Standby	$\mathrm{I}_{\text {S_standby }}$			10	$\mu \mathrm{A}$
Frequency range	TX	f	2.4		2.5	GHz
Gain-control range	TX	$\Delta \mathrm{Gp}$	60	42		dB
Power gain maximum	TX, pin PA_IN to V3_PA_OUT	Gp	28	30	33	dB
Power gain minimum	TX, pin PA_IN to V3_PA_OUT	Gp	-40		-17	dB
Ramping voltage maximum	TX, power gain (maximum) Pin RAMP	$V_{\text {RAMP max }}$	1.7	1.75	1.83	V
Ramping voltage minimum	TX, power gain (minimum) Pin RAMP	$\mathrm{V}_{\text {RAMP min }}$		0.1		V
Ramping current maximum	TX, $\mathrm{V}_{\text {RAMP }}=1.75 \mathrm{~V}$, pin RAMP	$I_{\text {RAMP max }}$			0.5	mA
Power-added efficiency	TX PSSO20 TX QFN20	$\begin{aligned} & \text { PAE } \\ & \text { PAE } \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$		$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
Saturated output power	TX, input power $=0 \mathrm{dBm}$ referred to pins V3_PA_OUT	$\mathrm{P}_{\text {sat }}$	22	23	24	dBm
Input matching ${ }^{(2)}$	TX, pin PA_IN	Load VSWR		< 1.5:1		
Output matching ${ }^{(2)}$	TX, pins V3_PA_OUT	Load VSWR		< 1.5:1		
Harmonics at $\mathrm{P}_{\text {sat }}=23 \mathrm{dBm}$	TX, pins V3_PA_OUT	2 fo			-30	dBc
	TX, pins V3_PA_OUT	3 fo			-30	dBc
T/R Switch Driver (Current Programming by External Resistor from R_SWITCH to GND)						
Switch-out current output	Standby, pin SWITCH_OUT	$\mathrm{I}_{\text {S_O_standby }}$			1	$\mu \mathrm{A}$
	RX	$\mathrm{IS}_{\text {_O_RX }}$			1	$\mu \mathrm{A}$
	TX at 100Ω	$\mathrm{I}_{\text {S_O_100 }}$		1.7		mA
	TX at $1.2 \mathrm{k} \Omega$	$\mathrm{l}_{\text {S_O_1k2 }}$		7		mA
	TX at $33 \mathrm{k} \Omega$	$\mathrm{l}_{\text {S_O_33k }}$		17		mA
	TX at ∞	IS _O_R		19		mA
Low-noise Amplifier ${ }^{(3)}$						
Supply voltage	All, pin VS_LNA	$\mathrm{V}_{\text {S }}$	2.7	3.0	5.5	V
Supply current	RX	I_{s}		8	9	mA

Notes: 1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true CW operation, maximum load mismatch and duration: load VSWR $=10: 1$ (all phases) $10 \mathrm{~s}, \mathrm{Z}_{\mathrm{G}}=50 \Omega$
2. With external matching network, load impedance 50Ω
3. Low-noise amplifier shall be unconditionally stable.
4. With external matching components.
5. LNA gain can be adjusted with RX_ON voltage according to Figure 19 on page 11. Please note, that for RX_ON below 1.4 V the T/R switch driver switches to TX mode.

Electrical Characteristics (Continued)

Test conditions (unless otherwise specified): $\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Supply current (LNA and control logic)	TX (control logic active) Pin VS_LNA	$\mathrm{I}_{\text {S }}$			0.5	mA
Standby current	Standby, pin VS_LNA	$\mathrm{IS}_{\text {_standby }}$		1	10	$\mu \mathrm{A}$
Frequency range	RX	f	2.4		2.5	GHz
Power gain ${ }^{(5)}$	RX, pin LNA_IN to LNA_OUT	Gp	15	16	19	dB
Noise figure	RX PSSO20 RX QFN20	$\begin{aligned} & \text { NF } \\ & \text { NF } \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.3 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Gain compression	RX, referred to pin LNA_OUT	O1dB	-9	-7	-6	dBm
$3{ }^{\text {rd }}$-order input interception point	RX	IIP3	-16	-14	-13	dBm
Input matching ${ }^{(4)}$	RX, pin LNA_IN	VSWRin			2:1	
Output matching ${ }^{(4)}$	RX, pin LNA_OUT	VSWRout			2:1	
Logic Input Levels (RX_ON, PU) ${ }^{(5)}$						
High input level	= '1' pins RX_ON and PU	V_{iH}	2.4		$\mathrm{V}_{\mathrm{S}, \text { LNA }}$	V
Low input level	= '0'	V_{iL}	0		0.5	V
High input current	$={ }^{\prime} 1^{\prime} \mathrm{V}_{\mathrm{iH}}=2.4 \mathrm{~V}$	I_{iH}		40	60	$\mu \mathrm{A}$
Low input current	= '0'	I_{iL}			0.2	$\mu \mathrm{A}$

Notes: 1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true CW operation, maximum load mismatch and duration: load VSWR $=10: 1$ (all phases) $10 \mathrm{~s}, \mathrm{Z}_{\mathrm{G}}=50 \Omega$
2. With external matching network, load impedance 50Ω
3. Low-noise amplifier shall be unconditionally stable.
4. With external matching components.
5. LNA gain can be adjusted with RX_ON voltage according to Figure 19 on page 11. Please note, that for RX_ON below 1.4 V the T/R switch driver switches to TX mode.

Control Logic PA and LNA/Antenna Switch Driver

PU	RX_ON	Ramp $^{(1)}$	PA	LNA	Antenna Switch Driver	Operation Mode
0	0	0	off	off	off	standby
0	0	1	on	off	off	(2)
0	1	0	off	on	off	(3)
0	1	1	on	on	off	(4)
1	0	0	off	off	on	(4)
1	0	1	on	off	on	TX
1	1	0	off	on	off	RX
1	1	on	on	off	(5)	

Notes: 1. " 0 " $=\mathrm{V}_{\text {RAMP }} \leq 0.1 \mathrm{~V}$, " 1 " $=\mathrm{V}_{\text {RAMP }}$ typically $1.75 \mathrm{~V}, 1.3 \mathrm{~V}<\mathrm{V}_{\text {RAMP }}<1.83 \mathrm{~V}$ controls gain and output power, compare Figure 9 on page 7 and Figure 13 on page 9
2. Only for special operation, e.g. only PA operation, no LNA/switch driver operation
3. Only for special operation, e.g. no switch driver operation
4. Only for special operation
5. Only for special operation, e.g. separate $T X / R X$ antennas, $T X$ and $R X$ operation at the same time

Typical Operating Characteristics

Figure 4. LNA (PSSO20): Gain and Noise Figure versus Frequency

Figure 5. LNA (N20): Gain and Noise Figure versus Frequency

Figure 6. LNA: NF and Gain versus Temperature

Figure 7. LNA: Typical Switch-out Current versus $\mathrm{R}_{\text {switch }}$

Figure 8. PA (PSSO20): Output Power and PAE versus Supply

Figure 9. PA (PSSO20): Output Power and PAE versus Ramp Voltage

Figure 10. PA (PSSO20): Output Power and PAE versus Input Power

Figure 11. PA (PSSO20): Output Power and PAE versus Frequency

Figure 12. PA (QFN20): Output Power and PAE versus Supply Voltage

Figure 13. PA (QFN20) Output Power and PAE versus Ramp Voltage

Figure 14. PA (QFN20): Output Power and PAE versus Input Power

Figure 15. PA (QFN20): Output Power and PAE versus Frequency

Figure 16. LNA: Supply Current versus Temperature

Figure 17. PA (PSSO20): Supply Current versus $\mathrm{I}_{\text {ramp }}$ and Temperature

Figure 18. PA (PSSO20, QFN20): $P_{\text {out }}$ versus $V_{\text {RAMP }}$ and Temperature

Figure 19. (PSSO20, QFN20): LNA Gain (dB) versus RX_ON (V)

Figure 20. Input Circuit PA_IN/V1_PA

Figure 21. Input Circuit RAMP/V1_PA

Figure 22．Input Circuit V2＿PA

Figure 23．Input／Output Circuit V3＿PA＿OUT

Figure 24．Input Circuit SWITCH＿OUT／R＿SWITCH

Figure 25. Input Circuit LNA_IN/VS_LNA

Figure 26. Input Circuit PU/RX_ON

Figure 27. Output Circuit LNA_OUT

Figure 28. Typical Application T7024 (PSSO20 Package)

Figure 29. Typical Application T7024 (QFN20 Package)
LNA OUT
 LED on application-board

Switch Out
PA OUT
blocking capacitors depending on application

Ordering Information

Extended Type Number	Package	Remarks	MOQ
T7024-TRS	PSSO20	Tube	830 pcs.
T7024-TRQ	PSSO20	Taped and reeled	4000 pcs.
T7024-PGP	QFN20	Taped and reeled	1500 pcs.
T7024-PGQ	QFN20	Taped and reeled	6000 pcs.
T7024-PGPM	QFN20	Taped and reeled Pb free, halogen free	1500 pcs.
T7024-PGQM	Taped and reeled Pb free, halogen free	6000 pcs.	
Demoboard-T7024-PG	QFN20	Evaluation board QFN	1
Demoboard-T7024-TR	PSSO20	Evaluation board PSSO	1

Package Information

Package: QFN 20-5x5
Exposed pad 3.1×3.1
(acc. JEDEC OUTLIN: N№. MO-220)
Dimensions in mm

Drawing-No: 6.543-5069.02-4
Issue: 3; 24.01.03

Drawing-No.:6.543-5078.01-4
Issue: 1: 05.06.01

Package Information PB Free

Package: QFN 20LD 5x5
Exposed pad 3.1×3.1

Drawing-No: 6.543-5094.01-4
Issue: 1 ; 19.12.02

technical drawings according to DIN specifications

Recommended PCB Land Pattern

Figure 30. Recommended PCB Land Pattern

Table 1. Recommended PCB Land Pattern Signs

Sign	Description	Size
A	Distance of vias	1.6 mm
B	Size of slug pattern	3.1 mm
C	Distance slug to pins	0.33 mm
D	Diameter of vias	1 mm
E	Width of pin pattern	0.3 mm
F	Distance of pin pattern	0.33 mm

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
\section*{Japan}
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2

Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved.

Atmel ${ }^{\circledR}$ and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.
The Bluetooth name and the Bluetooth trademarks are owned By Bluetooth SIG, and are used by Atmel Corporation under license.
Other terms and product names may be the trademarks of others.
Printed on recycled paper.

