imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

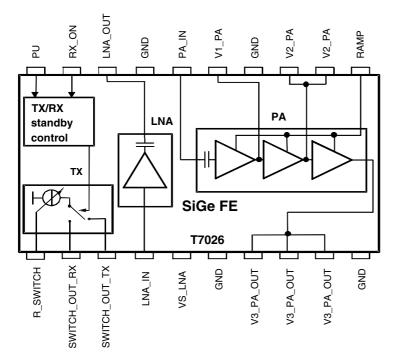
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Single 3-V Supply Voltage
- High-power-added Efficient Power Amplifier (Pout Typically 28 dBm)
- Ramp-controlled Output Power
- Low-noise Preamplifier (NF Typically 2.1 dB)
- Biasing for External PIN Diode T/R Switch
- Current-saving Standby Mode
- Few External Components
- Package: QFN20


1. Description

The T7026 is a monolithic SiGe transmit/receive front-end IC with power amplifier, low-noise amplifier and T/R switch driver. It is especially designed for operation in TDMA systems like DECT, IEEE 802.11 FHSS WLAN, home RF and ISM proprietary radios. Due to the ramp-control feature and a very low quiescent current, an external switch transistor for V_S is not required.

Electrostatic sensitive device. Observe precautions for handling.

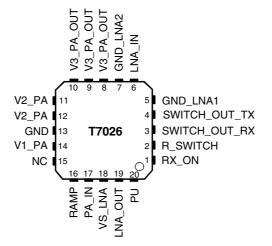
Figure 1-1. Block Diagram

ISM 2.4 GHz

Front End IC

GE

T7026


Rev. 4563E-ISM-07/05

2. Pin Configuration

Figure 2-1. Pinning QFN20

Figure 2-2. Pin Description

Pin	Symbol	Function
1	RX_ON	RX active high
2	R_SWITCH	Resistor to GND sets the PIN diode current
3	SWITCH_OUT_RX	Switched current output for PIN diode (active in RX mode)
4	SWITCH_OUT_TX	Switched current output for PIN diode (active in TX mode)
5	GND_LNA1	Ground
6	LNA_IN	Low-noise amplifier input
7	GND_LNA2	Ground
8	V3_PA_OUT	Inductor to power supply and matching network for power amplifier output
9	V3_PA_OUT	Inductor to power supply and matching network for power amplifier output
10	V3_PA_OUT	Inductor to power supply and matching network for power amplifier output
11	V2_PA	Inductor to power supply for power amplifier
12	V2_PA	Inductor to power supply for power amplifier
13	GND	Ground
14	V1_PA	Supply voltage for power amplifier
15	NC	Not connected
16	RAMP	Power ramping control input
17	PA_IN	Power amplifier input
18	VS_LNA	Supply voltage input for low-noise amplifier
19	LNA_OUT	Low-noise amplifier output
20	PU	Power-up active high
Slug	GND	Ground

T7026

3. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. All voltages are referred to ground (pins GND and slug)

Parameters	Symbol	Value	Unit
Supply voltage			
Pins VS_LNA, V1_PA, V2_PA and V3_PA_OUT, no RF	V _S	5	V
Junction temperature	Tj	150	°C
Storage temperature	T _{stg}	-40 to +125	°C
RF input power LNA	P _{inLNA}	5	dBm
RF input power PA	P _{inPA}	10	dBm

4. Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient QFN20, slug soldered on PCB	R _{thJA}	27	K/W

5. Operating Range

All voltages are referred to ground (pins GND and slug). Power supply points are VS_LNA, V1_PA, V2_PA, V3_PA_OUT. The following table represents the sum of all supply currents depending on the TX/RX mode.

Parameters	Symbol	Min.	Тур.	Max.	Unit
Supply voltage Pins V1_PA, V2_PA and V3_PA_OUT	V _S	2.7	3.6	4.6	V
Supply voltage Pin VS_LNA	Vs	2.7	3.0	5.5	V
Supply current TX RX	I _S		470 8		mA mA
Standby current PU = 0	I _S		10		μA
Ambient temperature	T _{amb}	-25	+25	+70	°C

6. Electrical Characteristics

Test conditions (unless otherwise specified): V_{S} = 3.6 V, T_{\mbox{\tiny amb}} = 25^{\circ}C

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Power Amplifier ⁽¹⁾						
Supply voltage	Pins V1_PA, V2_PA and V3_PA_OUT	V _S	2.7	3.6	4.6	V
Supply current	ТХ	I _{S_TX}		470		mA
	RX (PA off), $V_{RAMP} \le 0.1 V$	I _{S_RX}			10	μA
Standby current	Standby for $V_{RAMP} \le 0.1 V$	I _{S_standby}			10	μA
Frequency range	ТХ	f	2.4		2.5	GHz
Gain-control range	ТХ	∆Gp	60	42		dB
Power gain maximum	ТХ	Gp	28	33	34	dB
Power gain minimum	Pin PA_IN to V3_PA_OUT	Gp	-40		-17	dB
Ramping voltage maximum	TX, power gain (max), pin RAMP	V _{RAMP max}	1.6	1.65	1.7	V
Ramping voltage minimum	TX, power gain (min), pin RAMP	V _{RAMP min}		1		V
Ramping current maximum	TX, V _{RAMP} = 1.75 V, pin RAMP	I _{RAMP max}			0.1	mA
Power-added efficiency	ТХ	PAE	33	37		%
Saturated output power	TX, input power = 0 dBm referred to pins V3_PA_OUT	P _{sat}	27	28	29	dBm
Input matching ⁽²⁾	TX pin PA_IN	Load VSWR		< 1.5:1		
Output matching ⁽²⁾	TX pins V3_PA_OUT	Load VSWR		< 1.5:1		
Harmonics at P 1dBCP	TX pins V3_PA_OUT	2 fo		-30		dBc
Harmonics at P 1dBCP	TX pins V3_PA_OUT	3 fo		-30		dBc
T/R-switch Driver (Current Progra	mming by External Resistor from R_SWITC	H to GND)				
	Standby, pin SWITCH_OUT	I _{S_O_standby}			1	μA
	RX	I _{S_O_RX}			1	μA
	TX at 100 Ω	I _{S_O_100}		1.7		mA
Switch-out current output	TX at 1.2 kΩ	I _{S_O_1k2}		7		mA
	TX at 33 kΩ	I _{S_O_33k}		17		mA
	TX at R switch open	I _{S_O_R}		19		mA
I_Switch_Out_RX maximum					7	mA
Low-noise Amplifier ⁽³⁾		1		I		
Supply voltage	All, pin VS_LNA	Vs	2.7	3.0	5	V
Supply current	RX	I _S		8	10	mA
Supply current (LNA and control logic)	TX (control logic active) pin VS_LNA	I _S			0.5	mA
Standby current	Standby, pin VS_LNA	I _{S_standby}		1	10	μA
Frequency range	RX	f	2.4		2.5	GHz

s: 1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true cw operation, maximum load mismatch and duration: VSWR = 8:1 (all phases) 10 s, ZG = 50 Ω , V_S = 3.6 V.

2. With external matching network, load impedance 50 $\boldsymbol{\Omega}$

3. Low-noise amplifier shall be unconditionally stable.

4. With external matching components.

6. Electrical Characteristics (Continued)

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Power gain	RX, pin LNA_IN to LNA_OUT	Gp	15	16	19	dB
Noise figure	RX	NF		2.1	2.3	dB
Gain compression	RX, referred to pin LNA_OUT	O1dB	-9	-7	-6	dBm
Third-order input interception point	RX	IIP3	-16	-14	-13	dBm
Input matching ⁽⁴⁾	RX, pin LNA_IN	VSWRin		< 2:1		
Output matching ⁽⁴⁾	RX, pin LNA_OUT	VSWRout		< 2:1		
Logic Input Levels (RX_ON, PU)						
High input level	= 1, pins RX_ON and PU	V _{iH}	2.4		V _{S, LNA}	V
Low input level	= 0	V _{iL}	0		0.5	V
High input current	= 1, V _{iH} = 2.4 V	l _{iH}		40	60	μA
Low input current	= 0	l _{iL}			0.2	μA

Test conditions (unless otherwise specified): V_S = 3.6 V, T_{amb} = 25°C

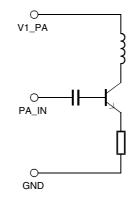
Notes: 1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true cw operation, maximum load mismatch and duration: VSWR = 8:1 (all phases) 10 s, ZG = 50 Ω , V_S = 3.6 V.

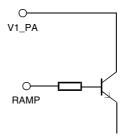
2. With external matching network, load impedance 50 Ω

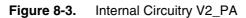
3. Low-noise amplifier shall be unconditionally stable.

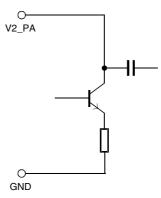
4. With external matching components.

7. Control Logic for LNA and T/R-switch Driver


Operation Mode	PU	RX_ON
Standby	0	0
ТХ	1	0
RX	1	1




8. Input/Output Circuits


Figure 8-1. Internal Circuitry; PA_IN, V1_PA

T7026

Figure 8-4. Internal Circuitry V3_PA_OUT

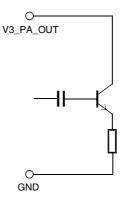
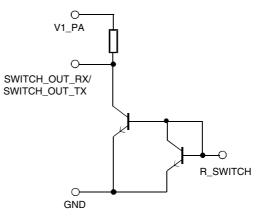
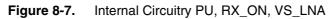



Figure 8-5. Internal Circuitry SWITCH_OUT_RX, SWITCH_OUT_TX, R_SWITCH, V1_PA



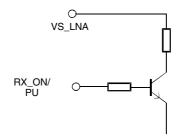
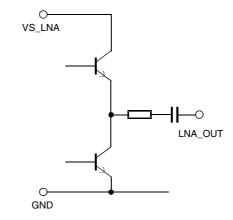
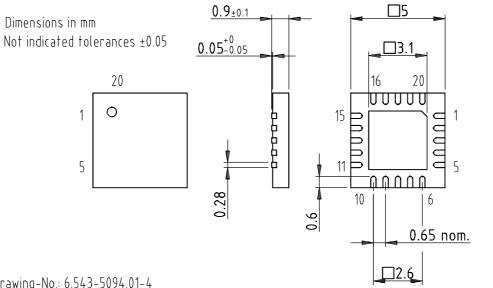



Figure 8-8. Internal Circuitry LNA_OUT, VS_LNA



9. Ordering Information

Extended Type Number	Package	Remarks	MOQ
T7026-PGQ	QFN20	Taped and reeled	6,000
T7026-PGP	QFN20	Taped and reeled	1,500
T7026-PGQW	QFN20, Pb-free, halogen-free	Taped and reeled	6,000
T7026-PGPW	QFN20, Pb-free, halogen-free	Taped and reeled	1,500

10. Package Information

Package: QFN 20LD 5x5 Exposed pad 3.1 x 3.1

technical drawings according to DIN specifications

Drawing-No.: 6.543-5094.01-4 Issue: 1; 19.12.02

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

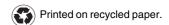
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

