

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

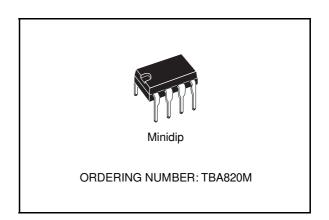
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



1.2W AUDIO AMPLIFIER

DESCRIPTION

The TBA820M is a monolithic integrated audio amplifier in a 8 lead dual in-line plastic package. It is intended for use as low frequency class B power amplifier with wide range of supply voltage: 3 to 16V, in portable radios, cassette recorders and players etc. Main features are: minimum working supply voltage of 3V, low quiescent current, low number of external components, good ripple rejection, no cross-over distortion, low power dissipation.

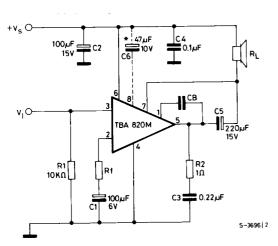
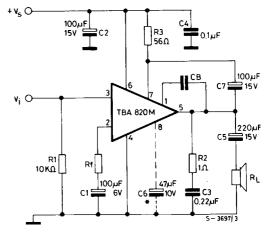
Output power: P_0 = 2W at 12V/8 Ω , 1.6W at 9V/4 Ω and 1.2W at 9V/8 Ω .

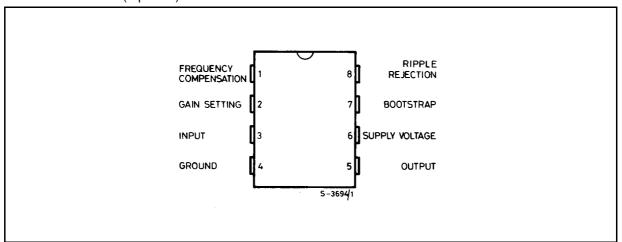
ABSOLUTE MAXIMUM RATINGS

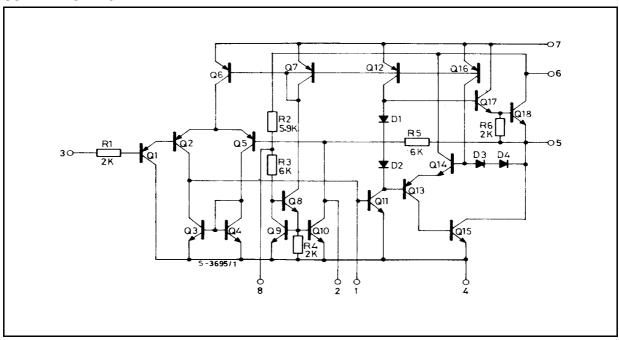
Symbol	Parameter	Value	Unit
Vs	Supply voltage	16	V
Io	Output peak current	1.5	Α
P _{tot}	Power dissipation at T _{amb} = 50°C	1	W
T_{stg}, T_{j}	Storage and junction temperature	-40 to 150	°C

TEST AND APPLICATION CIRCUITS

Figure 1. Circuit diagram with load connected to the supply voltage


Figure 2. Circuit diagram with load connected to ground


Capacitor C6 must be used when high ripple rejection is requested.

September 2003

PIN CONNECTION (top view)

SCHEMATIC DIAGRAM

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th-j-amb}	Thermal resistance junction-ambient max	100	°C/W

2/6

ELECTRICAL CHARACTERISTICS (Refer to the test circuits Vs = 9V, $T_{amb} = 25$ °C unless otherwise specified)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit	
Vs	Supply voltage			3		16	V	
Vo	Quiescent output voltage (pin 5)			4	4.5	5	V	
I _d	Quiescent drain current				4	12	mA	
I _b	Bias current (pin 3)				0.1		μΑ	
Po	Output power	$\begin{array}{l} d = 10\% \\ R_f = 120\Omega \\ V_S = 12V \\ V_S = 9V \\ V_S = 9V \\ V_S = 6V \\ V_S = 3.5V \end{array}$	$f = 1 \text{ kHz}$ $R_L = 8\Omega$ $R_L = 4\Omega$ $R_L = 8\Omega$ $R_L = 4\Omega$ $R_L = 4\Omega$	0.9	2 1.6 1.2 0.75 0.25		W W W W	
Ri	Input resistance (pin 3)	f = 1 kHz		5			MΩ	
В	Frequency response (-3 dB)	$R_L = 8\Omega$	C _B = 680 pF	25 to 7,000 25 to 20,000		00	Hz	
		$C_5 = 1000 \ \mu F$ $R_f = 120\Omega$	C _B = 220 pF			00		
d	Distortion	$P_{o} = 500 \text{ mW}$ $R_{L} = 8\Omega$ $f = 1 \text{ kHz}$	$R_f = 33\Omega$		0.8		0/	
			$R_f = 120\Omega$		0.4		%	
G _v	Voltage gain (open loop)	f = 1 kHz	$R_L = 8\Omega$		75		dB	
Gv	Voltage gain (closed loop)	$R_L = 8\Omega$	$R_f = 33\Omega$		45		dB	
		f = 1 kHz	$R_f = 120\Omega$		34		ub	
e _N	Input noise voltage (*)				3		μV	
i _N	Input noise current (*)				0.4		nA	
S+N	Signal to noise ratio (*)	$P_o = 1.2W$ $R_L = 8\Omega$ $G_v = 34 \text{ dB}$	R1 = 10KΩ		80		dB	
N			R1 = 50 kΩ		70		uв	
SVR	Supply voltage rejection (test circuit of fig. 2)	$R_L = 8\Omega$ $f_{(ripple)} = 100 \text{ Hz}$ $C6 = 47 \mu\text{F}$ $R_f = 120\Omega$			42		dB	

^(*) B = 22 Hz to 22 KHz

Figure 3. Output power vs. supply voltage

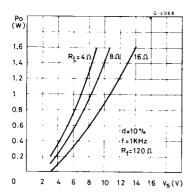


Figure 4. Harmonic distortion vs. output power

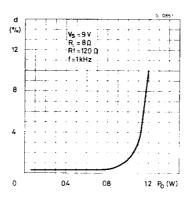


Figure 5. Power dissipation and efficiency vs. output power

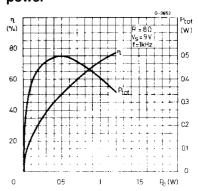


Figure 6. Maximum power dissipation (sine wave operation)

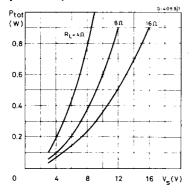


Figure 7. Suggested value of C_B vs. R_f

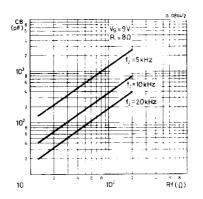


Figure 8. Frequency response

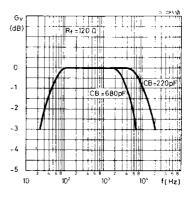


Figure 9. Harmonic distortion vs. frequency



Figure 10. Supply voltage rejection (Fig. 2 circuit)

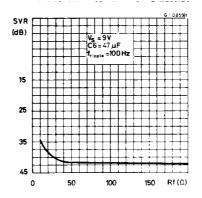
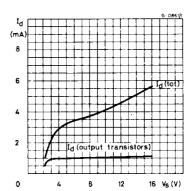
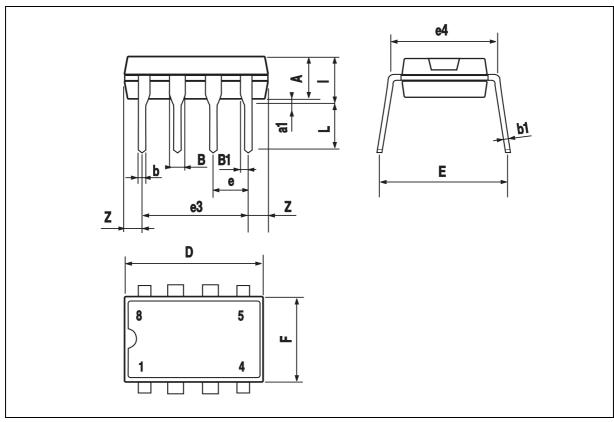



Figure 11. Quiescent current vs. supply voltage



4/6

DIM.	mm			inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

4