imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

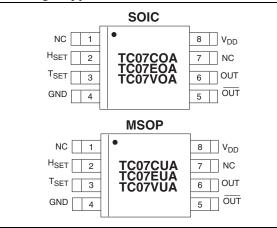
Obsolete Device

TC07

3V Logic Output Temperature Sensor with Programmable Hysteresis

Features

- User Programmable Hysteresis and Temperature Set Point
- Easily Programs with Two External Resistors
- Wide Temperature Detection Range
 - TC07CXA: -0°C to +70°C
 - TC07EXA: -40°C to +85°C
 - TC07VXA: -40°C to +125°C
- 8-Pin MSOP and 8-Pin SOIC Packages
- Cost Effective

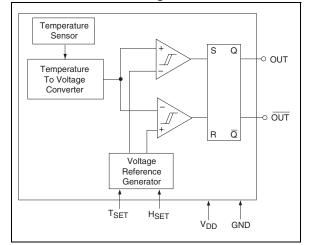

Applications

- Power Supply Over-Temperature Detection
- Consumer Equipment
- · Temperature Regulators

Device Selection Table

Part Number	Package	Temperature Range
TC07COA	8-Pin SOIC	0°C to +70°C
TC07CUA	8-Pin MSOP	0°C to +70°C
TC07EOA	8-Pin SOIC	-40°C to +85°C
TC07EUA	8-Pin MSOP	-40°C to +85°C
TC07VOA	8-Pin SOIC	-40°C to +125°C
TC07VUA	8-Pin MSOP	-40°C to +125°C

Package Type


General Description

The TC07 is a programmable, logic output temperature detector that operates from power supply levels as low as 2.7V. Programming is accomplished with external resistors connected from the temperature set point input (T_{SET}) and the hysteresis control input (H_{SET}) to V_{DD}.

Complementary outputs (OUT and $\overline{\text{OUT}}$) are driven active when temperature exceeds the temperature threshold programmed by the resistor on T_{SET}. The states of these outputs are maintained (latched) until temperature falls below threshold programmed by the resistor on H_{SET}.

The TC07 has an operating temperature range of -40°C to +125°C (TC07VXA). It features low (<130 μ A) supply current and with 8-pin MSOP and 8-pin SOIC packages, making it suitable for a wide variety of applications.

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

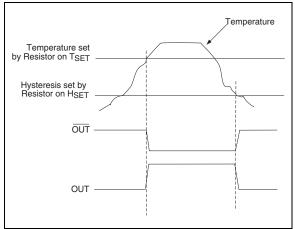
TC07 ELECTRICAL SPECIFICATIONS

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Electrical Characteristics: T _A = Over operational temperature range, unless otherwise specified.							
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
V _{DD}	Supply Voltage Range	2.7	-	5.5	V		
I _{DD}	Supply Current	-	130	300	μA	2.7V < V _{CC} < 5.5V	
V _{OH}	Output Voltage (High)	0.8 x V _{DD}	-	-	V	I _{OUT} = 500μA	
V _{OL}	Output Voltage (Low)	-	-	0.25 x V _{DD}	V	I _{OUT} = 1mA	
Н	Minimum Hysteresis	-5	-	-	°C	H _{SET} < T _{SET}	
T _{SET}	Absolute Accuracy	T - 3	T ± 1	T + 3	°C	T = Programmed Temperature	
H _{SET}	Absolute Accuracy	T - 5	T ± 1	T + 5	°C	T = Programmed Temperature	

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.


TABLE 2-1: PIN FUNCTION TABLE

Pin No. (8-Pin SOIC) (8-Pin MSOP)	Symbol	Description
1	NC	No Internal Connection
2	H _{SET}	Absolute Accuracy
3	T _{SET}	Absolute Accuracy
4	GND	Ground
5	OUT	Minimum Hysteresis
6	OUT	Absolute Accuracy
7	NC	No Internal Connection
8	V _{DD}	Supply Voltage Range

3.0 DETAILED DESCRIPTION

The TC07 programs with resistors connected from the $\frac{T_{SET}}{T_{SET}}$ and H_{SET} inputs to V_{DD} . Output pins OUT and OUT are driven active when the temperature exceeds the setting determined by the programming resistor on T_{SET} . The outputs are maintained (latched) in their active states until temperature drops below the setting determined by the programming resistor on H_{SET} (Figure 3-1).

FIGURE 3-1: TC07 OUTPUT WAVEFORMS

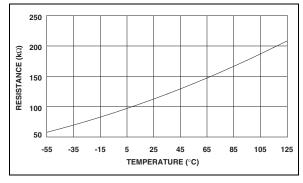
4.0 TYPICAL APPLICATIONS

4.1 Trip Point Programming

The resistor values required to achieve the desired trip point temperatures on T_{SET} and H_{SET} are calculated using the formula below:

$$R_{TRIP} = 0.6 \times T^{2.13}$$

Where:


 R_{TRIP} = Programming resistor value in Ohms T = Desired trip point temperature in degrees Kelvin.

For example, to program the TC07 outputs to go active at 50°C and inactive at 30°C, the R_T and R_H programming resistors are calculated as follows:

 $\begin{array}{l} \mathsf{R}_{\mathsf{T}} = 0.6 \; x \; ((50 + 273.15)^{2.13}) = 132.8 \mathrm{k}\Omega \\ \mathsf{R}_{\mathsf{H}} = 0.6 \; x \; ((30 + 273.15)^{2.13}) = 115.9 \mathrm{k}\Omega \end{array}$

Resistance values for T_{SET} and H_{SET} can be approximated using Figure 4-1. Care must be taken to ensure the H_{SET} programming resistor is a smaller value than the T_{SET} programming resistor. The temperature programmed on H_{SET} must be at least 5°C lower than the temperature value programmed by T_{SET} .

FIGURE 4-1: PROGRAMMING RESISTOR VALUES VS. TEMPERATURE

4.2 Cooling and Heating Applications

The TC07 can be used to control a DC fan as shown in Figure 4-2. The fan turns on when the sensed temperature rises above the temperature set at T_{SET} and remains on until the temperature falls below the temperature set at H_{SET} . The amount of "cooling" performed by the fan is dependent on the programmed hysteresis.

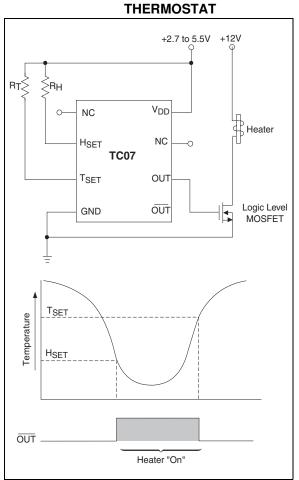
Figure 4-3 shows the TC07 acting as a heater thermostat. Circuit operation is identical to that of the cooling fan application in Figure 4-2.

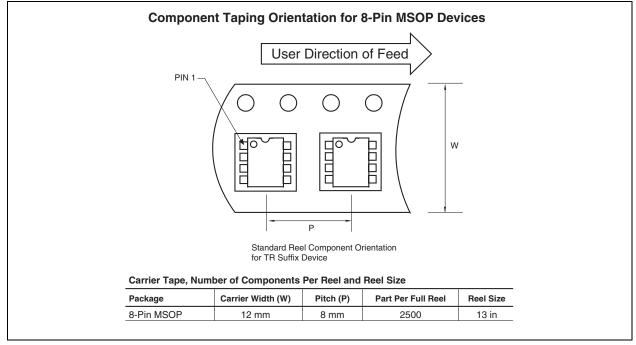
TC07 AS A FAN

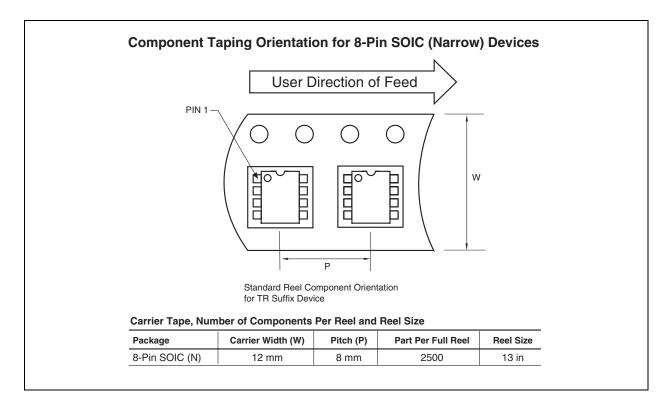
CONTROLLER

FIGURE 4-2:

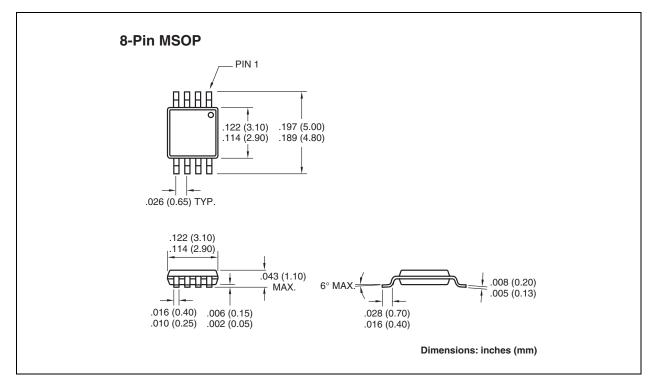
	CONTROLLER		
	+2.7 to 5.5V +12V		
RTS SF	ЗН		
	O-NC VDD Fran		
	TSET OUT		
Г	GND OUT		
=			
Temperature	SET		
Temp	DET		
Out —			
	Fan "On"		

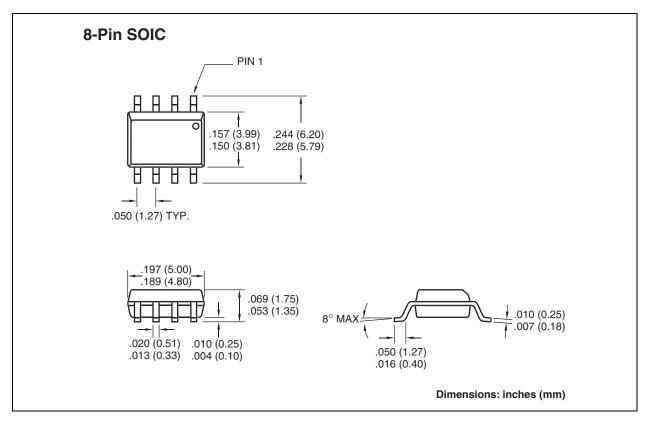



FIGURE 4-3: TC07 AS A HEATER


5.0 PACKAGING INFORMATION

5.1 Package Marking Information


Package marking data not available at this time.


5.2 Taping Form

5.3 Package Dimensions

TC07

NOTES:

_

SALES AND SUPPORT

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

TC07

NOTES:

_

Note the following details of the code protection feature on Microchip devices:

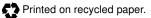
- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOO® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 604-646-8870 Fax: 604-646-5086

Philippines - Manila Tel: 632-634-9065

Fax: 632-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820