imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON GATE CMOS

1G BIT (128M \times 8 BIT) CMOS NAND E^2PROM

DESCRIPTION

The TC58NVG0S3HTAI0 is a single 3.3V 1Gbit (1,140,850,688bits) NAND Electrically Erasable and Programmable Read-Only Memory (NAND E²PROM) organized as (2048 + 128) bytes \times 64 pages \times 1024blocks. The device has a 2176-byte static registers which allow program and read data to be transferred between the register and the memory cell array in 2176-byte increments. The Erase operation is implemented in a single block unit (128 Kbytes + 8 Kbytes: 2176 bytes \times 64 pages).

The TC58NVG0S3HTAI0 is a serial-type memory device which utilizes the I/O pins for both address and data input/output as well as for command inputs. The Erase and Program operations are automatically executed making the device most suitable for applications such as solid-state file storage, voice recording, image file memory for still cameras and other systems which require high-density non-volatile memory data storage.

FEATURES

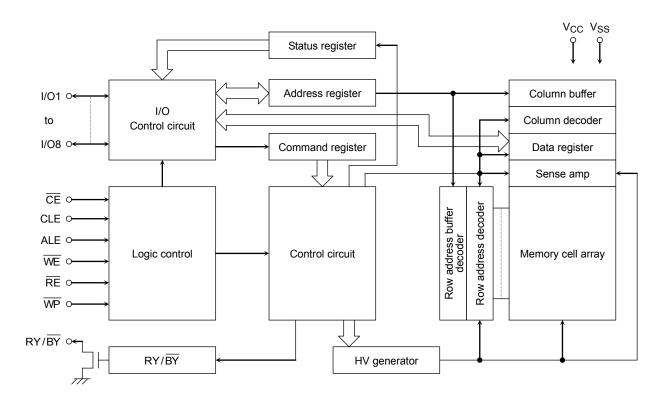
Organization

	x8
Memory cell array	$2176\times 64 K\times 8$
Register	2176×8
Page size	2176 bytes
Block size	(128K + 8K) bytes

• Modes

Read, Reset, Auto Page Program, Auto Block Erase, Status Read, Page Copy

- Mode control Serial input/output Command control
- Number of valid blocks Min 1004 blocks Max 1024 blocks
- Power supply $V_{CC} = 2.7V$ to 3.6V
- Access time Cell array to register 25 μs max Serial Read Cycle 25 ns min (CL=50pF)
- Program/Erase time Auto Page Program Auto Block Erase
 300 μs/page typ. 2.5 ms/block typ.
- Operating current Read (25 ns cycle) 30 mA max. Program (avg.) 30 mA max Erase (avg.) 30 mA max Standby 50 µA max
- Package TSOP I 48-P-1220-0.50 (Weight: 0.53 g typ.)
- 8 bit ECC for each 512Byte is required.


PIN ASSIGNMENT (TOP VIEW)

		TC58NVG0S3HTAI0	
×8			×8
NCCCCCCCCR NCCCCCCCCR NCCCCCCCCCCCCCCCC	$ \begin{array}{c c} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 21 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ \end{array} $		48 I NC 47 I NC 46 I NC 45 I I/O 44 I/O7 I/O6 43 I/O7 I/O6 41 I/O5 NC 39 I NC 38 NC NC 37 I Vcc 36 I VSS 35 I I/O3 30 I I/O2 29 I I/O1 28 I NC 27 I NC 26 I NC 25 I NC

PIN NAMES

I/O1 to I/O8	I/O port
CE	Chip enable
WE	Write enable
RE	Read enable
CLE	Command latch enable
ALE	Address latch enable
WP	Write protect
RY/BY	Ready/Busy
V _{CC}	Power supply
V _{SS}	Ground
NC	No Connection

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	VALUE	UNIT
V _{CC}	Power Supply Voltage	-0.6 to 4.6	V
V _{IN}	Input Voltage	-0.6 to 4.6	V
V _{I/O}	Input /Output Voltage	-0.6 to V_{CC} + 0.3 $~(\leq 4.6~\text{V})$	V
P _D	Power Dissipation	0.3	W
T _{SOLDER}	Soldering Temperature (10 s)	260	°C
T _{STG}	Storage Temperature	-55 to 150	°C
T _{OPR}	Operating Temperature	-40 to 85	°C

CAPACITANCE *(Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	CONDITION	MIN	MAX	UNIT
C _{IN}	Input	$V_{IN} = 0 V$	-	10	pF
C _{OUT}	Output	$V_{OUT} = 0 V$	_	10	pF

* This parameter is periodically sampled and is not tested for every device.

VALID BLOCKS

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
N _{VB}	Number of Valid Blocks	1004		1024	Blocks

NOTE: The device occasionally contains unusable blocks. Refer to Application Note (13) toward the end of this document. The first block (Block 0) is guaranteed to be a valid block at the time of shipment. The specification for the minimum number of valid blocks is applicable over lifetime

RECOMMENDED DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
V _{CC}	Power Supply Voltage	2.7	_	3.6	v
VIH	High Level input Voltage	Vcc x 0.8		V _{CC} + 0.3	v
VIL	Low Level Input Voltage	-0.3*		Vcc x 0.2	V

* -2 V (pulse width lower than 20 ns)

DC CHARACTERISTICS (Ta = -40 to 85°C, V_{CC} = 2.7 to 3.6V)

SYMBOL	PARAMETER	CONDITION	MIN	TYP.	MAX	UNIT
IIL	Input Leakage Current	$V_{IN} = 0 V \text{ to } V_{CC}$	_	_	±10	μA
I _{LO}	Output Leakage Current	$V_{OUT} = 0 V \text{ to } V_{CC}$	_		±10	μA
I _{CCO1}	Serial Read Current	$\overline{CE} = V_{IL}, I_{OUT} = 0 \text{ mA}, \text{ tcycle} = 25 \text{ ns}$	_		30	mA
I _{CCO2}	Programming Current	_			30	mA
I _{CCO3}	Erasing Current	_			30	mA
I _{CCS}	Standby Current	$\overline{\text{CE}} = \text{V}_{CC} - 0.2 \text{ V}, \ \overline{\text{WP}} = 0 \text{ V/V}_{CC}$	_	_	50	μA
V _{OH}	High Level Output Voltage	I _{OH} = -0.1 mA	Vcc – 0.2		_	V
V _{OL}	Low Level Output Voltage	I _{OL} = 0.1 mA	_		0.2	V
I _{OL} (RY/BY)	Output current of RY/BY pin	V _{OL} = 0.2 V		4	_	mA

<u>AC CHARACTERISTICS AND RECOMMENDED OPERATING CONDITIONS</u> (Ta = -40 to 85° C, V_{CC} = 2.7 to 3.6V)

SYMBOL	PARAMETER	MIN	MAX	UNIT
t _{CLS}	CLE Setup Time	12		ns
t _{CLH}	CLE Hold Time	5	—	ns
tcs	CE Setup Time	20		ns
t _{CH}	CE Hold Time	5		ns
twp	Write Pulse Width	12	—	ns
t _{ALS}	ALE Setup Time	12	_	ns
t _{ALH}	ALE Hold Time	5	_	ns
t _{DS}	Data Setup Time	12	_	ns
t _{DH}	Data Hold Time	5	—	ns
twc	Write Cycle Time	25		ns
t _{WH}	WE High Hold Time	10		ns
tww	WP High to WE Low	100		ns
t _{RR}	Ready to RE Falling Edge	20	_	ns
t _{RW}	Ready to WE Falling Edge	20		ns
t _{RP}	Read Pulse Width	12		ns
t _{RC}	Read Cycle Time	25	_	ns
^t REA	RE Access Time		20	ns
tCEA	CE Access Time		25	ns
t _{CLR}	CLE Low to RE Low	10		ns
t _{AR}	ALE Low to RE Low	10	_	ns
t _{RHOH}	RE High to Output Hold Time	25		ns
t _{RLOH}	RE Low to Output Hold Time	5	_	ns
t _{RHZ}	RE High to Output High Impedance		60	ns
t _{CHZ}	CE High to Output High Impedance		20	ns
tcsD	CE High to ALE or CLE Don't Care	0		ns
t _{REH}	RE High Hold Time	10	_	ns
t _{IR}	Output-High-impedance-to- RE Falling Edge	0		ns
t _{RHW}	RE High to WE Low	30	_	ns
twhc	WE High to CE Low	30	_	ns
^t WHR	WE High to RE Low	60	_	ns
^t R	Memory Cell Array to Starting Address		25	μS
DCBSYR1	Data Cache Busy in Read Cache (following 31h and 3Fh)	μs		
DCBSYR2	Data Cache Busy in Page Copy (following 3Ah)	_	30	μS
ŧwв	WE High to Busy	_	100	ns
^t RST	Device Reset Time (Ready/Read/Program/Erase)	_	5/5/10/500	μS

*1: tCLS and tALS can not be shorter than tWP

*2: tCS should be longer than tWP + 8ns.

AC TEST CONDITIONS

PARAMETER	CONDITION			
FARAWETER	V _{CC} : 2.7 to 3.6V			
Input level	V_{CC} – 0.2 V, 0.2 V			
Input pulse rise and fall time	3 ns			
Input comparison level	Vcc / 2			
Output data comparison level	Vcc / 2			
Output load	C _L (50 pF) + 1 TTL			

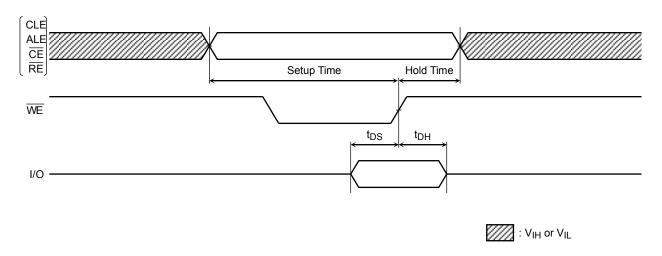
Note: Busy to ready time depends on the pull-up resistor tied to the RY/\overline{BY} pin. (Refer to Application Note (9) toward the end of this document.)

PROGRAMMING AND ERASING CHARACTERISTICS (Ta = -40 to 85° C, V_{CC} = 2.7 to 3.6V)

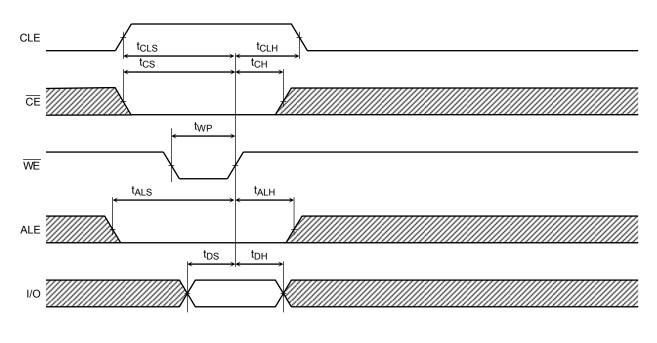
SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT	NOTES
^t PROG	Average Programming Time	_	300	700	μS	
t _{DCBSYW2}	Data Cache Busy Time in Write Cache (following 15h)			700	μS	(2)
Ν	Number of Partial Program Cycles in the Same Page			4		(1)
t _{BERASE}	Block Erasing Time		2.5	5	ms	

(1) Refer to Application Note (12) toward the end of this document.

(2) t_{DCBSYW2} depends on the timing between internal programming time and data in time.

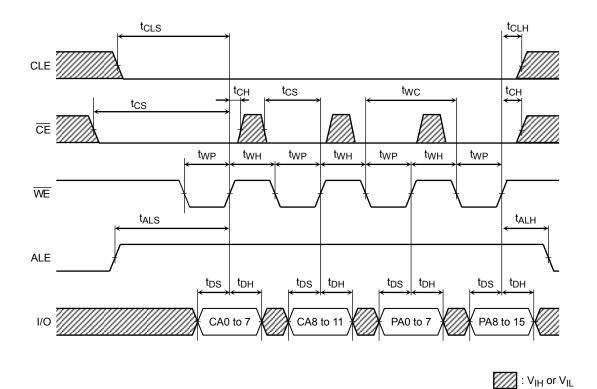

Data Output

When tREH is long, output buffers are disabled by /RE=High, and the hold time of data output depend on tRHOH (25ns MIN). On this condition, waveforms look like normal serial read mode.

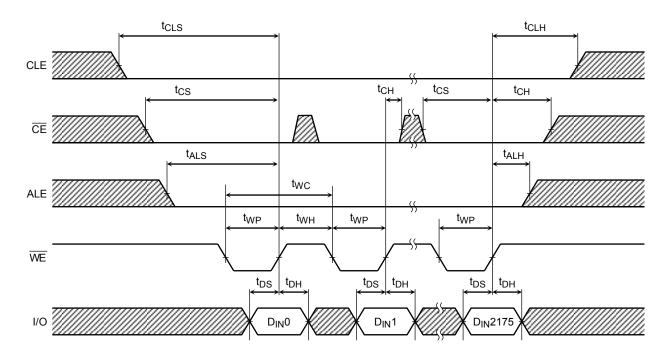

When tREH is short, output buffers are not disabled by /RE=High, and the hold time of data output depend on tRLOH (5ns MIN). On this condition, output buffers are disabled by the rising edge of CLE,ALE,/CE or falling edge of /WE, and waveforms look like Extended Data Output Mode.

TIMING DIAGRAMS

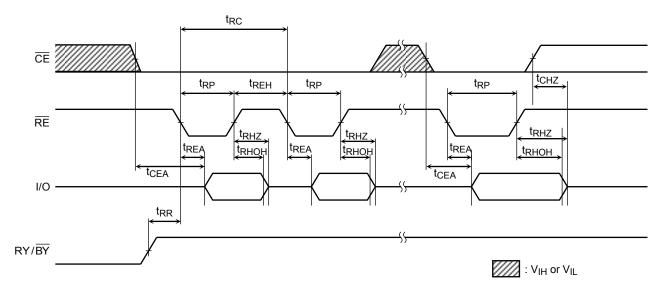
Latch Timing Diagram for Command/Address/Data

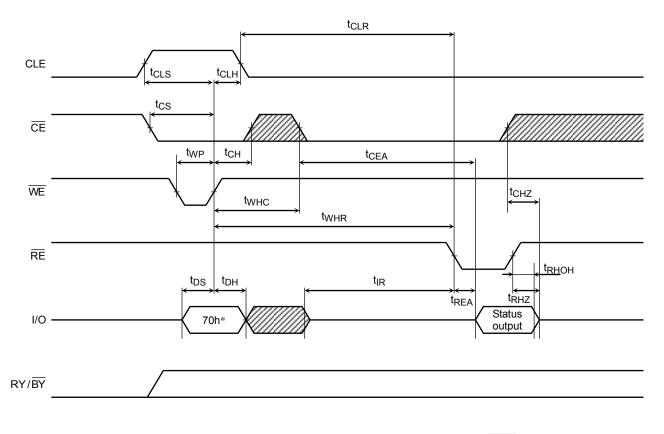


Command Input Cycle Timing Diagram



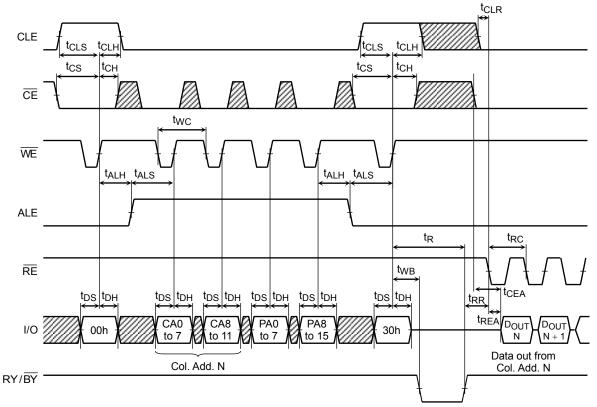
: V_{IH} or V_{IL}


Address Input Cycle Timing Diagram

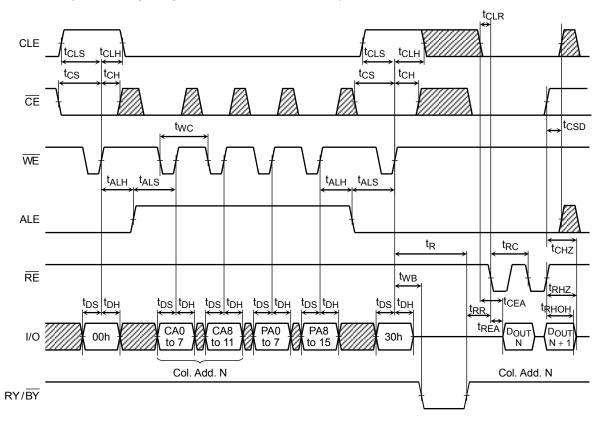

Data Input Cycle Timing Diagram

Serial Read Cycle Timing Diagram

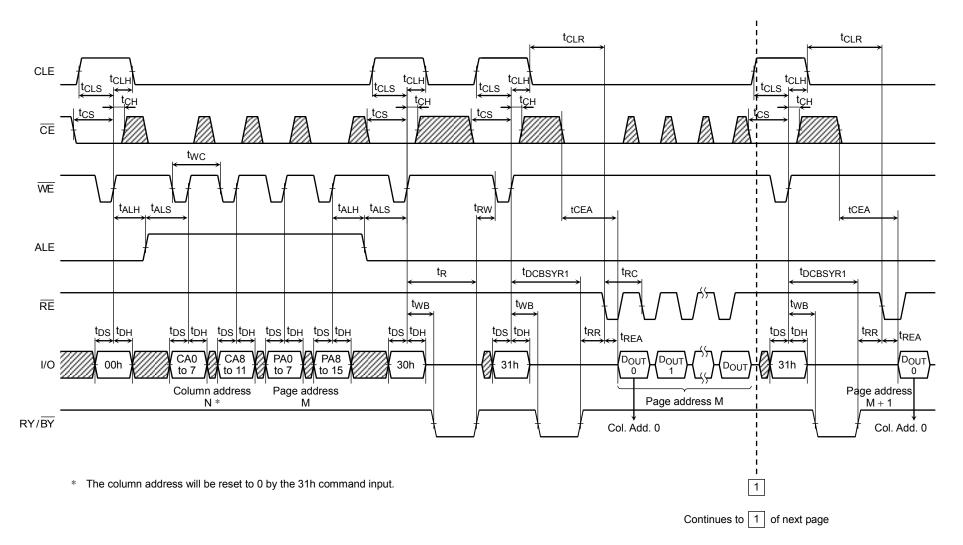
Status Read Cycle Timing Diagram

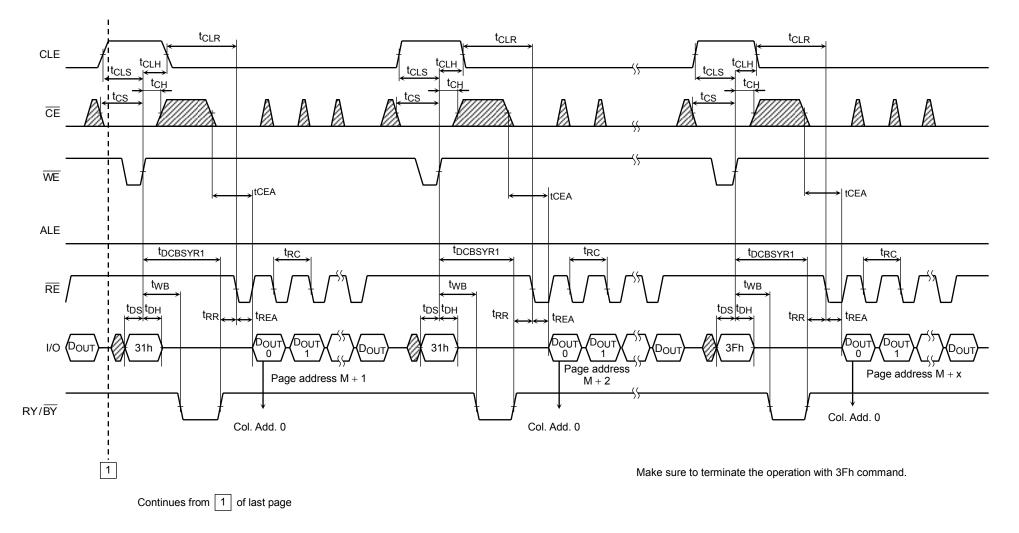


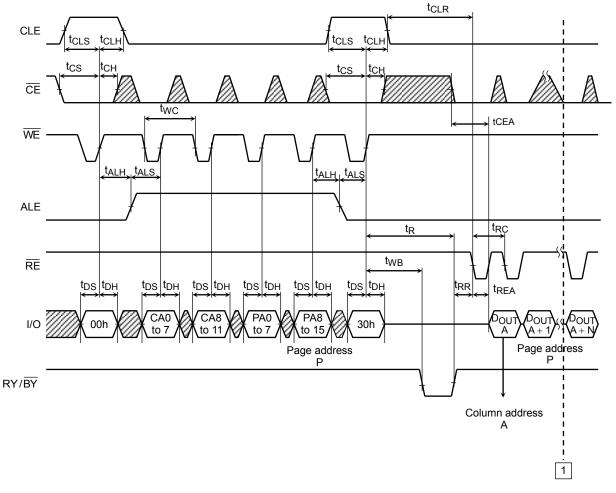
*: 70h represents the hexadecimal number


: V_{IH} or V_{IL}

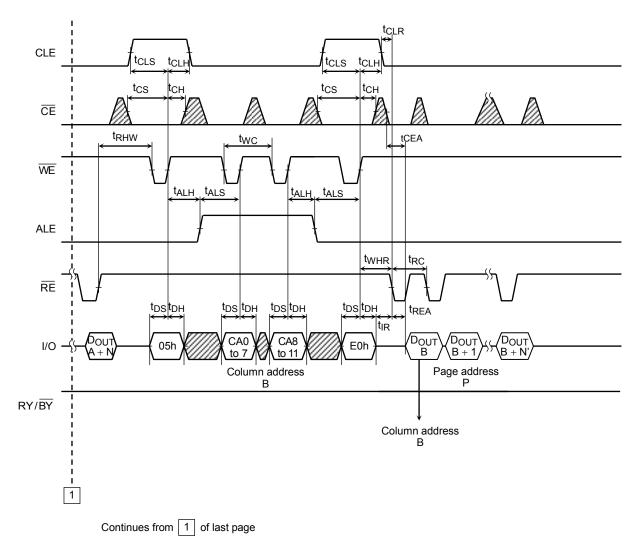
<u>TOSHIBA</u>


Read Cycle Timing Diagram


Read Cycle Timing Diagram: When Interrupted by CE

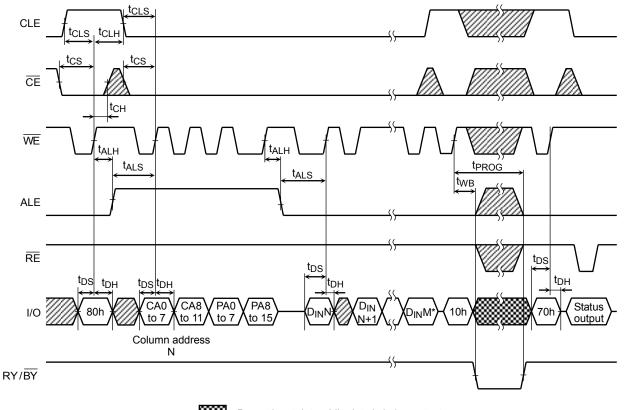

Read Cycle with Data Cache Timing Diagram (1/2)

Read Cycle with Data Cache Timing Diagram (2/2)



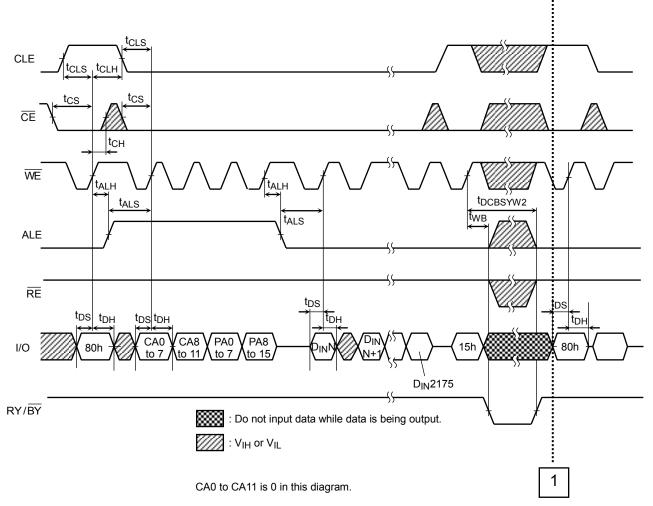
Column Address Change in Read Cycle Timing Diagram (1/2)

Continues from 1 of next page


Column Address Change in Read Cycle Timing Diagram (2/2)

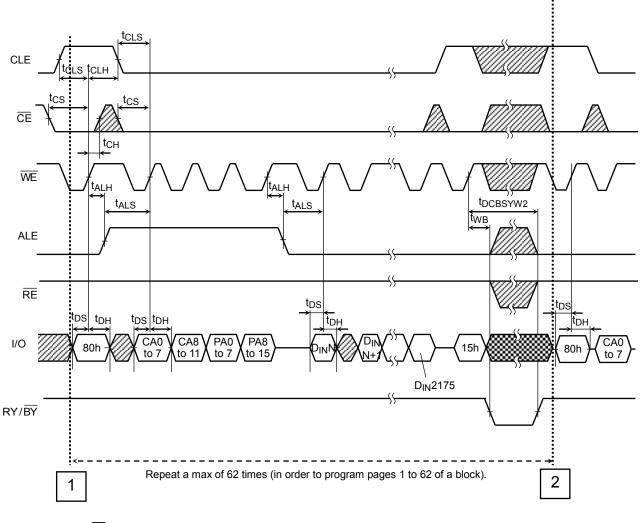
Data Output Timing Diagram

Auto-Program Operation Timing Diagram


0

: Do not input data while data is being output.

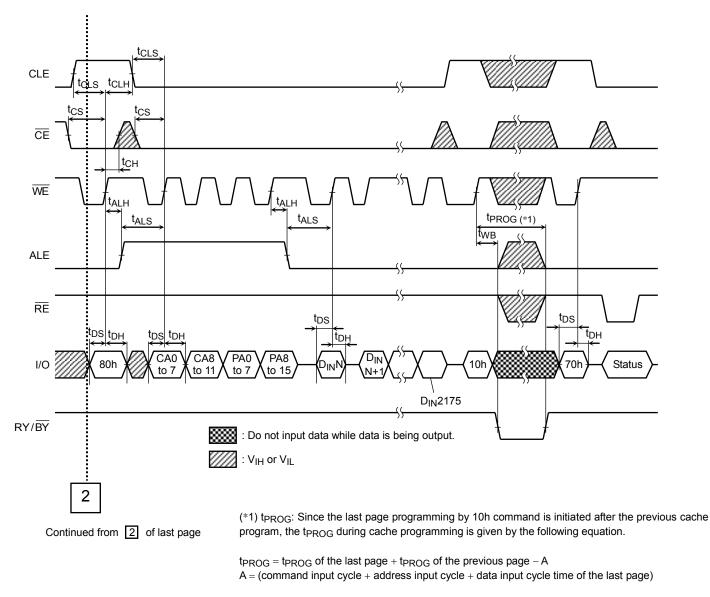
🖉 : V_{IH} or V_{IL}


*) M: up to 2175 (byte input data for ×8 device).

Auto-Program Operation with Data Cache Timing Diagram (1/3)

Continues to 1 of next page

Auto-Program Operation with Data Cache Timing Diagram (2/3)

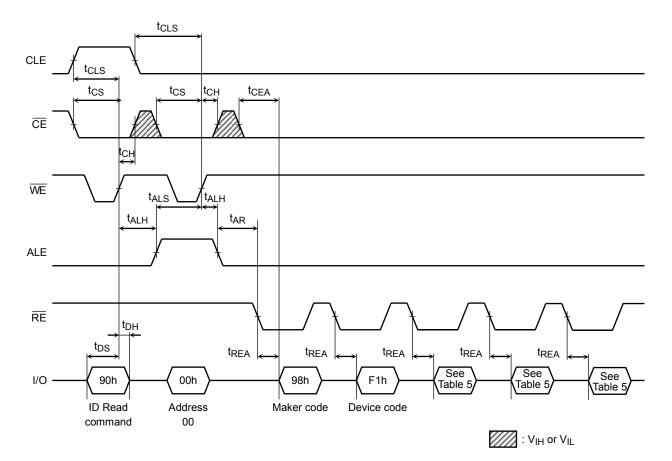


Continued from 1 of last page

: Do not input data while data is being output.

🕖 : V_{IH} or V_{IL}

Auto-Program Operation with Data Cache Timing Diagram (3/3)


If "A" exceeds the tPROG of previous page, tPROG of the last page is tPROG max.

(Note) Make sure to terminate the operation with 80h-10h- command sequence. If the operation is terminated by 80h-15h command sequence, monitor I/O 6 (Ready / Busy) by issuing Status Read command (70h) and make sure the previous page program operation is completed. If the page program operation is completed issue FFh reset before next operation.

Auto Block Erase Timing Diagram

ID Read Operation Timing Diagram

PIN FUNCTIONS

The device is a serial access memory which utilizes time-sharing input of address information.

Command Latch Enable: CLE

The CLE input signal is used to control loading of the operation mode command into the internal command register. The command is latched into the command register from the I/O port on the rising edge of the \overline{WE} signal while CLE is High.

Address Latch Enable: ALE

The ALE signal is used to control loading address information into the internal address register. Address information is latched into the address register from the I/O port on the rising edge of \overline{WE} while ALE is High.

Chip Enable: CE

The device goes into a low-power Standby mode when \overline{CE} goes High during the device is in Ready state. The \overline{CE} signal is ignored when device is in Busy state (RY / \overline{BY} = L), such as during a Program or Erase or Read operation, and will not enter Standby mode even if the \overline{CE} input goes High.

Write Enable: WE

The \overline{WE} signal is used to control the acquisition of data from the I/O port.

Read Enable: RE

The \overline{RE} signal controls serial data output. Data is available t_{REA} after the falling edge of \overline{RE} . The internal column address counter is also incremented (Address = Address + 1) on this falling edge.

I/O Port: I/O1 to 8

The I/O1 to 8 pins are used as a port for transferring address, command and input/output data to and from the device.

Write Protect: WP

The \overline{WP} signal is used to protect the device from accidental programming or erasing. The internal voltage regulator is reset when \overline{WP} is Low. This signal is usually used for protecting the data during the power-on/off sequence when input signals are invalid.

Ready/Busy: RY / BY

The RY / \overline{BY} output signal is used to indicate the operating condition of the device. The RY / \overline{BY} signal is in Busy state (RY / \overline{BY} = L) during the Program, Erase and Read operations and will return to Ready state (RY / \overline{BY} = H) after completion of the operation. The output buffer for this signal is an open drain and has to be pulled-up to Vccq with an appropriate resister.

If RY / \overline{BY} signal is not pulled-up to Vccq("Open" state), device operation can not guarantee.

Schematic Cell Layout and Address Assignment

The Program operation works on page units while the Erase operation works on block units.

A page consists of 2176 bytes in which 2048 bytes are used for main memory storage and 128 bytes are for redundancy or for other uses.

1 page = 2176 bytes

1 block = 2176 bytes \times 64 pages = (128K + 8K) bytes Capacity = 2176 bytes \times 64pages \times 1024 blocks

An address is read in via the I/O port over four consecutive clock cycles, as shown in Table 1.

Table 1. Addressing

	I/O8	I/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
First cycle	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
Second cycle	L	L	L	L	CA11	CA10	CA9	CA8
Third cycle	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Fourth cycle	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8

CA0 to CA11: Column address PA0 to PA15: Page address

PA6 to PA15: Block address PA0 to PA5: NAND address in block

Operation Mode: Logic and Command Tables

The operation modes such as Program, Erase, Read and Reset are controlled by command operations shown in Table 3. Address input, command input and data input/output are controlled by the CLE, ALE, $\overline{\text{CE}}$, $\overline{\text{WE}}$, $\overline{\text{RE}}$ and $\overline{\text{WP}}$ signals, as shown in Table 2.

	CLE	ALE	CE	WE	RE	WP *1	
Command Input	Н	L	L		Н	*	
Data Input	L	L	L		Н	Н	
Address input	L	Н	L		Н	*	
Serial Data Output	L	L	L	Н		*	
During Program (Busy)	*	*	*	*	* H		
During Erase (Busy)	*	*	*	*	*	н	
	*	*	Н	*	*	*	
During Read (Busy)	*	*	L	H (*2)	H (*2)	*	
Program, Erase Inhibit	*	*	*	*	*	L	
Standby	*	*	Н	*	*	0 V/V _{CC}	

H: V_{IH}, L: V_{IL}, *: V_{IH} \text{ or } V_{IL}

*1: Refer to Application Note (10) toward the end of this document regarding the WP signal when Program or Erase Inhibit

*2: If \overline{CE} is low during read busy, \overline{WE} and \overline{RE} must be held High to avoid unintended command/address input to the device or read to device. Reset or Status Read command can be input during Read Busy.

Table 3. Command table (HEX)

	First Cycle	Second Cycle	Acceptable while Busy
Serial Data Input	80	_	
Read	00	30	
Column Address Change in Serial Data Output	05	E0	
Read with Data Cache	31	_	
Read Start for Last Page in Read Cycle with Data Cache	3F	—	
Auto Page Program	80	10	
Column Address Change in Serial Data Input	85	—	
Auto Program with Data Cache	80	15	
Read for Page Copy (2) with Data Out	00	3A	
Auto Program with Data Cache during Page Copy (2)	8C	15	
Auto Program for last page during Page Copy (2)	8C	10	
Auto Block Erase	60	D0	
ID Read	90	_	
Status Read	70	_	0
Reset	FF	—	0

HEX data bit assignment

(Example) Serial Data Input: 80h

1	0	0	0	0	0	0	0
8	7	6	5	4	3	2	I/O1

Table 4. Read mode operation states

	CLE	ALE	CE	WE	RE	I/O1 to I/O8	Power
Output select	L	L	L	н	L	Data output	Active
Output Deselect	L	L	L	Н	Н	High impedance	Active

H: V_{IH}, L: V_{IL}