

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.0 A Output Current, **Dual Power Operational Amplifiers**

The TCA0372 is a monolithic circuit intended for use as a power operational amplifier in a wide range of applications, including servo amplifiers and power supplies. No deadband crossover distortion provides better performance for driving coils.

Features

- Output Current to 1.0 A
- Slew Rate of 1.3 V/us
- Wide Bandwidth of 1.1 MHz
- Internal Thermal Shutdown
- Single or Split Supply Operation
- Excellent Gain and Phase Margins
- Common Mode Input Includes Ground
- Zero Deadband Crossover Distortion
- NCV devices are AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

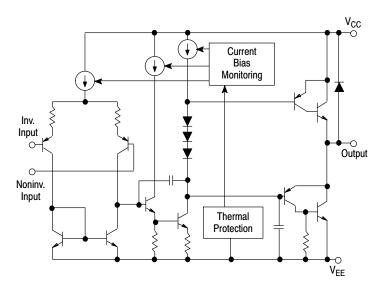


Figure 1. Representative Block Diagram



ON Semiconductor®

http://onsemi.com

PDIP-8 **DP1 SUFFIX CASE 626**

PDIP-16 **DP2 SUFFIX CASE 648**

SOIC-16W **DW SUFFIX CASE 751G**

SOEIAJ-16 **DM2 SUFFIX CASE 966**

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 6 of this data sheet.

1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from V _{CC} to V _{EE})	V _S	40	V
Input Differential Voltage Range	V_{IDR}	Note 1	V
Input Voltage Range	V _{IR}	Note 1	V
Junction Temperature (Note 2)	T _J	+150	°C
Operating Temperature Range	T _A	-40 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
DC Output Current	Io	1.0	Α
Peak Output Current (Nonrepetitive)	I _(max)	1.5	Α
Thermal Resistance, Junction-to-Air Case 626 Case 648 Case 751G	$R_{ hetaJA}$	137 72 80	°C/W
Thermal Resistance, Junction-to-Case Case 626 Case 648 Case 751G	R _{θJC}	23 10 12	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Either or both input voltages should not exceed the magnitude of V_{CC} or V_{EE}.
 Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded.

DC ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, R_L connected to ground, T_A = -40° to +125°C.)

	Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (Vo	V _{IO}				mV	
	$T_A = +25^{\circ}C$			1.0	15	
T_A , T_{low} to T_{high}			_	_	20	
Average Temperature C	Coefficient of Offset Voltage	$\Delta V_{IO}/\Delta T$	-	20	-	μV/°C
Input Bias Current (V _{CN}	1 = 0)	I _{IB}	-	100	500	nA
Input Offset Current (V _C	_{CM} = 0)	I _{IO}	-	10	50	nA
Large Signal Voltage G $V_O = \pm 10 \text{ V}, R_L = 2.0$		Avol	30	100	-	V/mV
Output Voltage Swing (I) $T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high} $T_A = +25^{\circ}C$	l _L = 100 mA)	V _{OH}	14.0 13.9 –	14.2 - -14.2	- - -14.0	V
$T_A = T_{low}$ to T_{high}	100		_	-	-13.9	\ /
Output Voltage Swing (I V _{CC} = +24 V, V _{EE} = 0 V _{CC} = +24 V, V _{EE} = 0 V _{CC} = +24 V, V _{EE} = 0 V _{CC} = +24 V, V _{EE} = 0	\overline{OV} , $T_A = +25^{\circ}C$ \overline{OV} , $T_A = T_{low}$ to T_{high} \overline{OV} , $T_A = +25^{\circ}C$	V _{OH}	22.5 22.5 – –	22.7 - 1.3 -	- - 1.5 1.6	V
Input Common Mode Voltage Range T _A = +25°C T _A = T _{low} to T _{high}		V _{ICR}		to (V _{CC} -	,	V
Common Mode Rejection	on Ratio (R _S = 10 k)	CMRR	70	90	-	dB
Power Supply Rejection Ratio (R _S = 100 Ω)		PSRR	70	90	-	dB
Power Supply Current $T_A = +25^{\circ}C$ $T_A = T_{low}$ to T_{high}	TCA0372 TCA0372B/NCV0372B TCA0372 TCA0372B/NCV0372B	Ι _D	- - -	5.0 8.0 – –	10 10 14 14	mA

$\textbf{AC ELECTRICAL CHARACTERISTICS} \ (V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ R_L \ connected \ to \ ground, \ T_A = +25 ^{\circ}C, \ unless \ otherwise \ noted.)$

Characteristics	Symbol	Min	Тур	Max	Unit
Slew Rate (V_{in} = -10 V to +10 V, R_L = 2.0 k, C_L = 100 pF) A_V = -1.0, T_A = T_{low} to T_{high}	SR	1.0	1.4	-	V/μs
Gain Bandwidth Product (f = 100 kHz, C_L = 100 pF, R_L = 2.0 k) T_A = 25°C T_A = T_{low} to T_{high}	GBW	0.9 0.7	1.4 -	- -	MHz
Phase Margin $T_J = T_{low}$ to T_{high} $R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	φ _m	_	65	_	Degrees
Gain Margin $R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	A _m	_	15	_	dB
Equivalent Input Noise Voltage $R_S = 100 \Omega$, $f = 1.0 to 100 kHz$	e _n	_	22	_	nV/√Hz
Total Harmonic Distortion $A_V = -1.0$, $R_L = 50 \Omega$, $V_O = 0.5$ VRMS, $f = 1.0$ kHz	THD	_	0.02	-	%

NOTE: In case V_{EE} is disconnected before V_{CC} , a diode between V_{EE} and Ground is recommended to avoid damaging the device.

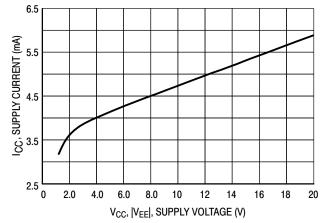


Figure 2. Supply Current versus Supply Voltage with No Load

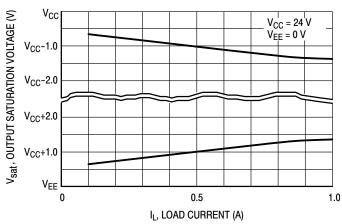


Figure 3. Output Saturation Voltage versus Load Current

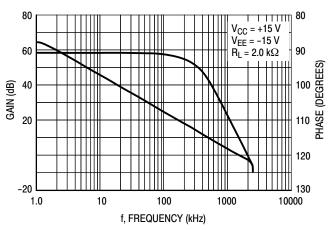


Figure 4. Voltage Gain and Phase versus Frequency

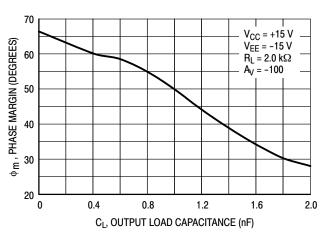


Figure 5. Phase Margin versus Output Load Capacitance

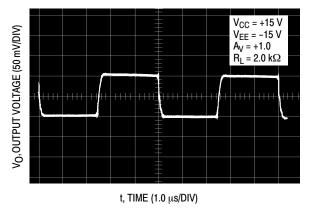


Figure 6. Small Signal Transient Response

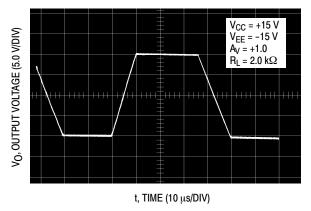


Figure 7. Large Signal Transient Response

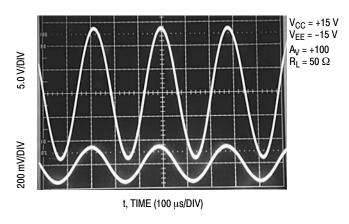


Figure 8. Sine Wave Response

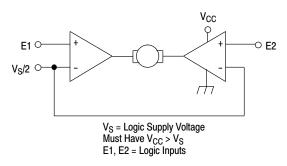
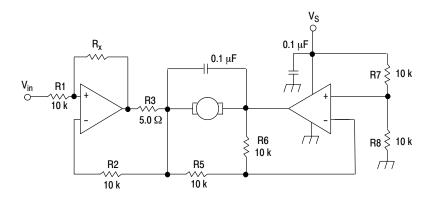
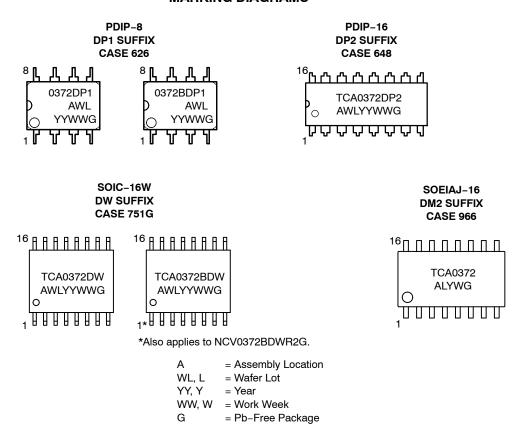



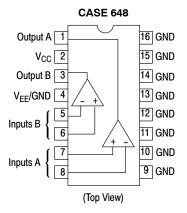
Figure 9. Bidirectional DC Motor Control with Microprocessor-Compatible Inputs

For circuit stability, ensure that $R_X > \frac{2R3 + R1}{R_M}$ where, R_M = internal resistance of motor. The voltage available at the terminals of the motor is: $V_M = 2 (V_1 - \frac{V_S}{2}) + |R_0| \cdot I_M$ where, $|R_0| = \frac{2R3 + R1}{R_X}$ and I_M is the motor current.

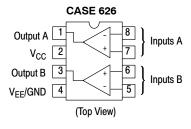

Figure 10. Bidirectional Speed Control of DC Motors

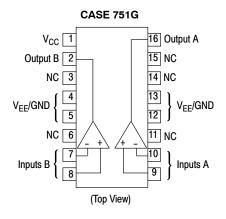
ORDERING INFORMATION

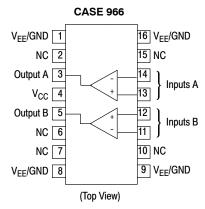
Device	Package	Shipping [†]
TCA0372DWG	SOIC-16W (Pb-Free)	47 Units / Rail
TCA0372DWR2G	SOIC-16W (Pb-Free)	1000 / Tape & Reel
TCA0372BDWR2G	SOIC-16W (Pb-Free)	1000 / Tape & Reel
NCV0372BDWR2G*	SOIC-16W (Pb-Free)	1000 / Tape & Reel
TCA0372DP1G	PDIP-8 (Pb-Free)	50 Units / Rail
TCA0372BDP1G	PDIP-8 (Pb-Free)	50 Units / Rail
TCA0372DP2G	PDIP-16 (Pb-Free)	25 Units / Rail
TCA0372DM2ELG	SOEIAJ-16 (Pb-Free)	2500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

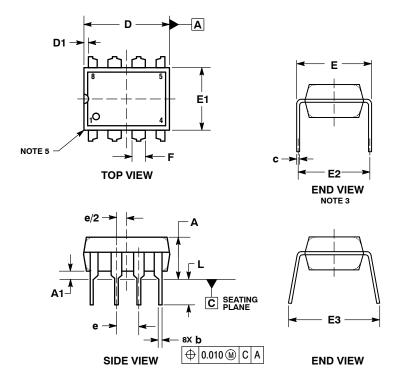
MARKING DIAGRAMS




^{*}AEC-Q100 Qualified and PPAP Capable


PIN CONNECTIONS

*Pins 4 and 9 to 16 are internally connected.

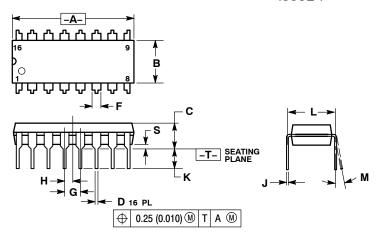


PACKAGE DIMENSIONS

PDIP-8 **DP1 SUFFIX** CASE 626-05 **ISSUE M**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.


 2. CONTROLLING DIMENSION: INCHES.

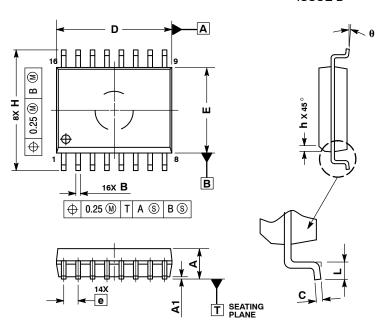
 3. DIMENSION E IS MEASURED WITH THE LEADS RE-

- STRAINED PARALLEL AT WIDTH E2.
 DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INCHES			MILLIMETERS		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			0.210			5.33
A1	0.015			0.38		
b	0.014	0.018	0.022	0.35	0.46	0.56
С	0.008	0.010	0.014	0.20	0.25	0.36
D	0.355	0.365	0.400	9.02	9.27	10.02
D1	0.005			0.13		
E	0.300	0.310	0.325	7.62	7.87	8.26
E1	0.240	0.250	0.280	6.10	6.35	7.11
E2	0.300 BSC		7.62 BSC		;	
E3			0.430			10.92
е	e 0.100 BSC		2.54 BSC			
L	0.115	0.130	0.150	2.92	3.30	3.81

PDIP-16 **DP2 SUFFIX** CASE 648-08 ISSUE T

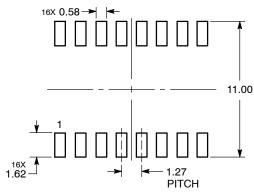
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOUSE IL ACU.


- MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

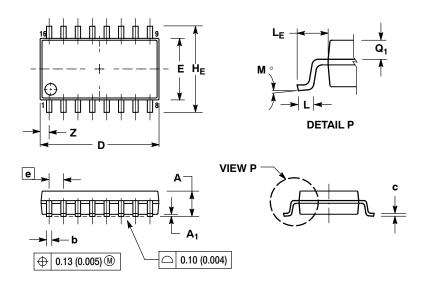
	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100 BSC		2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0 °	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

PACKAGE DIMENSIONS


SOIC-16 WB CASE 751G-03 ISSUE D

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	10.15	10.45		
E	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
а	0 °	7 °		


SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOEIAJ-16 **DM2 SUFFIX** CASE 966 **ISSUE A**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 114-5M, 1982.

 CONTROLLING DIMENSION: MILLIMETER.

 DIMENSIONS DAND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- PEH SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT
 INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α		2.05		0.081	
A ₁	0.05	0.20	0.002	0.008	
b	0.35	0.50	0.014	0.020	
c	0.10	0.20	0.007	0.011	
D	9.90	10.50	0.390	0.413	
Е	5.10	5.45	0.201	0.215	
е	1.27	BSC	0.050 BSC		
HE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LE	1.10	1.50	0.043	0.059	
M	0 °	10°	0 °	10°	
Q ₁	0.70	0.90	0.028	0.035	
Z		0.78		0.031	

ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any reserves the right to make charges without lutriler houce to any products neveral. SciLLC makes no warrany, representation or guarantee regarding the suitability of any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative