imall

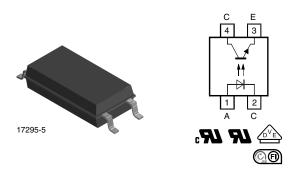
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



TCLT101. Series

HAY, www.vishay.com

Vishay Semiconductors

Optocoupler, Phototransistor Output, LSOP-4, 110 °C Rated, Long Mini-Flat Package

DESCRIPTION

The TCLT101. series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead LSOP package.

APPLICATIONS

- Switchmode power supplies
- Computer peripheral interface
- Microprocessor system interface

FEATURES

- SMD low profile 4 lead package
- High isolation 5000 V_{RMS}
- CTR flexibility available see order information
- Extra low coupling capacitance
- Connected base
- DC input with transistor output
- Temperature range -55 °C to +110 °C
- Creepage distance > 8 mm
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

AGENCY APPROVALS

- UL1577, file no. E76222
- cUL file no. E76222, equivalent to CSA bulletin 5A
- DIN EN 60747-5-5
- FIMKO: EN 60950

ORDERING INFORMATION										
ТС		L	Т	1	0	1	¥	LSOP-4		
				PART NU	JMBER				→ 10.2 m	im 🛌
AGENC	AGENCY CERTIFIED/PACKAGE					CTR	R (%)			
CERTIF			5 mA	10	mA			5 mA		
UL, cU	UL, cUL, VDE, FIMKO		50 to 600	63 to 125	100 to 200	50 to 150	100 to 300	80 to 160	130 to 260	200 to 400
LSOP-4	4		TCLT1010	TCLT1012	TCLT1013	TCLT1015	TCLT1016	TCLT1017	TCLT1018	TCLT1019

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
INPUT								
Reverse voltage		V _R	6	V				
Forward current		I _F	60	mA				
Forward surge current	t _p ≤ 10 μs	I _{FSM}	1.5	А				
Power dissipation		P _{diss}	100	mW				
Junction temperature		Tj	125	°C				
OUTPUT	· · · ·							
Collector emitter voltage		V _{CEO}	70	V				
Emitter collector voltage		V _{ECO}	7	V				
Collector current		lc	50	mA				
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA				
Power dissipation		P _{diss}	150	mW				
Junction temperature		Tj	125	°C				

1 For technical questions, contact: <u>optocoupleranswers@vishay.com</u> Document Number: 81256

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

TCLT101. Series

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	VALUE	UNIT						
COUPLER								
Total power dissipation		P _{tot}	250	mW				
Operating ambient temperature range		T _{amb}	-55 to +110	°C				
Storage temperature range	T _{stg}	-55 to +125	°C					
Soldering temperature ⁽¹⁾		T _{sld}	260	°C				

Notes

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ Wave soldering three cycles are allowed. Also refer to "Assembly Instruction" (<u>www.vishay.com/doc?80054</u>).

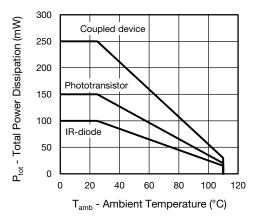


Fig. 1 - Total Power Dissipation vs. Ambient Temperature

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. U								
INPUT								
Forward voltage	I _F = 50 mA	V _F	-	1.25	1.6	V		
Junction capacitance	V _R = 0 V, f = 1 MHz	Cj	-	50	-	pF		
OUTPUT								
Collector emitter voltage	$I_{\rm C} = 1 \rm{mA}$	V _{CEO}	70	-	-	V		
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7	-	-	V		
Collector emitter leakage current	$V_{CE} = 20 \text{ V}, \text{ I}_{F} = 0 \text{ A}$	I _{CEO}	-	10	100	nA		
COUPLER								
Collector emitter saturation voltage	I _F = 10 mA, I _C = 1 mA	V _{CEsat}	-	-	0.3	V		
Cut-off frequency	V_{CE} = 5 V, I_F = 10 mA, R_L = 100 Ω	f _c	-	110	-	kHz		
Coupling capacitance	f = 1 MHz	C _k	-	0.3	-	pF		

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
	$V_{CE} = 5 \text{ V}, \text{ I}_{F} = 5 \text{ mA}$	TCLT1010	CTR	50	-	600	%	
	V _{CE} = 5 V, I _E = 10 mA	TCLT1012	CTR	63	-	125	%	
	$v_{CE} = 5 v, i_F = 10 mA$	TCLT1013	CTR	100	-	200	%	
	$V_{CE} = 5 V, I_F = 1 mA$	TCLT1012	CTR	22	45	-	%	
I _C /I _F		TCLT1013	CTR	34	70	-	%	
IC/IF		TCLT1015	CTR	50	-	150	%	
		TCLT1016	CTR	100	-	300	%	
	$V_{CE} = 5 \text{ V}, \text{ I}_{F} = 5 \text{ mA}$	TCLT1017	CTR	80	-	160	%	
		TCLT1018	CTR	130	-	260	%	
		TCLT1019	CTR	200	-	400	%	

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V _{pd}	1.6	kV
Partial discharge test voltage -	t _{Tr} = 60 s, t _{test} = 10 s,	V _{IOTM}	8	kV
lot test (sample test)	(see figure 2)	V _{pd}	1.3	kV
Isolation test voltage (RMS)		V _{ISO}	5000	V _{RMS}
	V _{IO} = 500 V	R _{IO}	10 ¹²	Ω
Insulation resistance	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹	Ω
	V _{IO} = 500 V, T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹	Ω
Forward current		I _{si}	130	mA
Power dissipation		P _{so}	265	mW
Rated impulse voltage		V _{IOTM}	8	kV
Safety temperature		T _{si}	150	°C
Clearance distance			8.0	mm
Creepage distance			8.0	mm
Insulation distance (internal)			0.40	mm

Note

 According to DIN EN 60747-5-2 (VDE 0884) (see figure 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

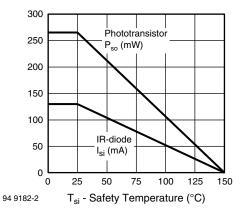


Fig. 2 - Derating Diagram

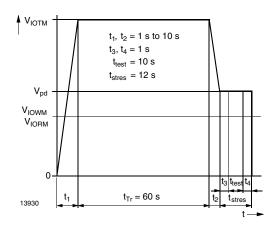
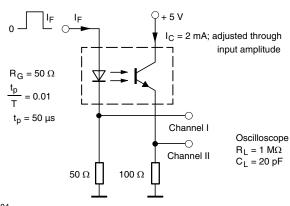


Fig. 3 - Test Pulse Diagram for Sample Test According to DIN EN 60747-5-2 (VDE 0884); IEC 60747-5-5

3


TCLT101. Series

www.vishay.com

Vishay Semiconductors

SWITCHING CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT			
Delay time	$\label{eq:VS} \begin{array}{l} V_S=5 \; V, \; I_C=2 \; mA, \; R_L=100 \; \Omega, \\ (see \; figure \; 3) \end{array}$	t _d	-	3	-	μs			
Rise time	$\label{eq:VS} \begin{array}{l} V_S = 5 \mbox{ V}, \mbox{ I}_C = 2 \mbox{ mA}, \mbox{ R}_L = 100 \ \Omega, \\ (see \mbox{ figure 3}) \end{array}$	t _r	-	3	-	μs			
Fall time	$\label{eq:VS} \begin{array}{l} V_{S} = 5 \; V, \; I_{C} = 2 \; mA, \; R_{L} = 100 \; \Omega, \\ (\text{see figure 3}) \end{array}$	t _f	-	4.7	-	μs			
Storage time	$\label{eq:VS} \begin{array}{l} V_S = 5 \ V, \ I_C = 2 \ mA, \ R_L = 100 \ \Omega, \\ (see \ figure \ 3) \end{array}$	ts	-	0.3	-	μs			
Turn-on time	$\label{eq:VS} \begin{array}{l} V_S = 5 \mbox{ V}, \mbox{ I}_C = 2 \mbox{ mA}, \mbox{ R}_L = 100 \ \Omega, \\ (see \mbox{ figure 3}) \end{array}$	t _{on}	-	6	-	μs			
Turn-off time	$\label{eq:VS} \begin{array}{l} V_{S} = 5 \; V, \; I_{C} = 2 \; mA, \; R_{L} = 100 \; \Omega, \\ (\text{see figure 3}) \end{array}$	t _{off}	-	5	-	μs			
Turn-on time	$\label{eq:VS} \begin{array}{l} V_S = 5 \ V, \ I_F = 10 \ mA, \ R_L = 1 \ k\Omega, \\ (see \ figure \ 4) \end{array}$	t _{on}	-	9	-	μs			
Turn-off time	$\label{eq:VS} \begin{array}{l} V_S = 5 \ V, \ I_F = 10 \ mA, \ R_L = 1 \ k\Omega, \\ (see \ figure \ 4) \end{array}$	t _{off}	-	10	-	μs			

95 10804

Fig. 4 - Test Circuit, Non-Saturated Operation

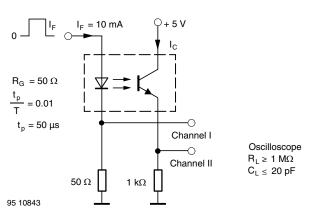
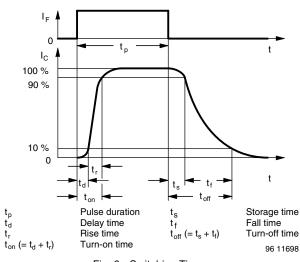



Fig. 5 - Test Circuit, Saturated Operation

Rev. 1.9, 19-Jan-16

4

TYPICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified)

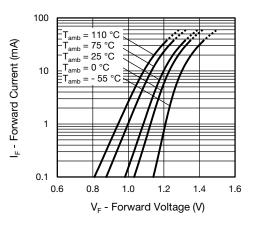


Fig. 7 - Forward Voltage vs. Forward Current

Fig. 8 - Collector Current vs. Collector Emitter Voltage (NS)

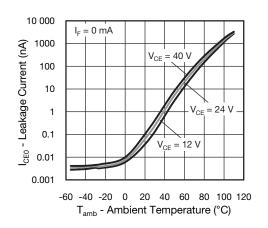


Fig. 9 - Leakage Current vs. Ambient Temperature

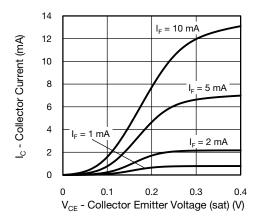


Fig. 10 - Collector Current vs. Collector Emitter Voltage (saturated)

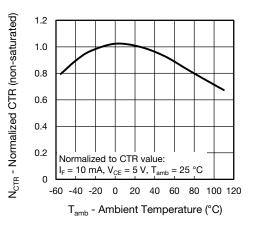


Fig. 11 - Normalized Current Transfer Ratio (non-saturated) vs. Ambient Temperature

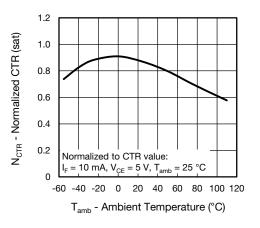


Fig. 12 - Normalized Current Transfer Ratio (saturated) vs. Ambient Temperature

5

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

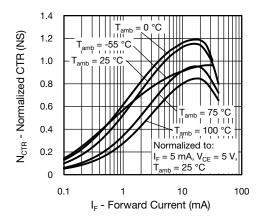


Fig. 13 - Normalized CTR (non-saturated) vs. Forward Current

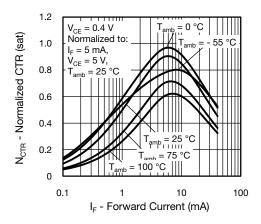


Fig. 14 - Normalized CTR (saturated) vs. Forward Current

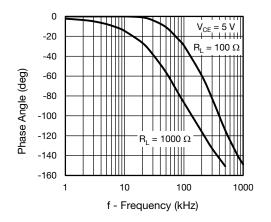


Fig. 15 - Phase Angle vs. Frequency

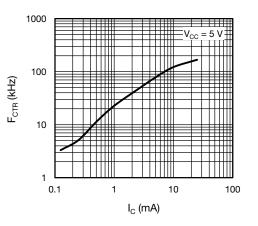


Fig. 16 - CTR Frequency vs. Collector Current

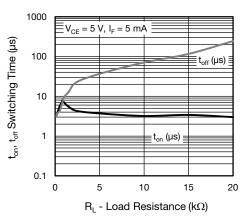
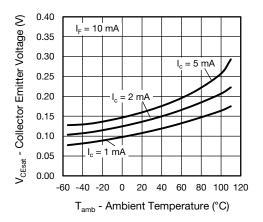
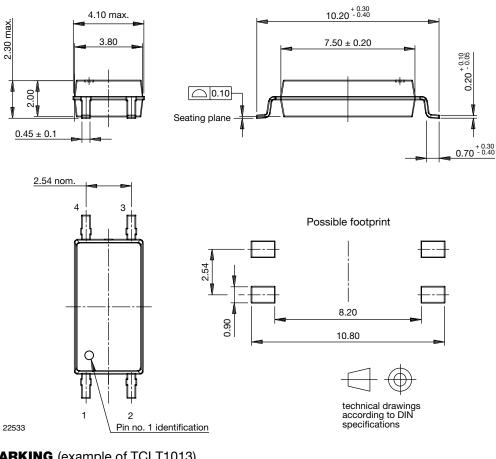


Fig. 17 - Switching Time vs. Load Resistance

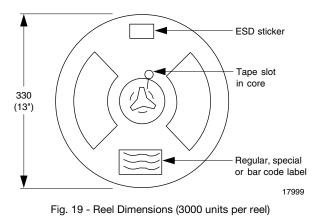



Fig. 18 - Collector Emitter Voltage vs. Ambient Temperature (saturated)

6

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

WISHAY. www.vishay.com


PACKAGE DIMENSIONS (in millimeters)

PACKAGE MARKING (example of TCLT1013)

TAPE AND REEL DIMENSIONS (in millimeters)

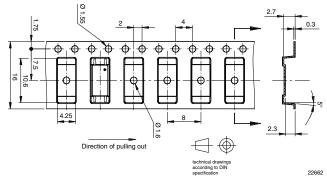


Fig. 20 - Tape Dimensions

Rev. 1.9, 19-Jan-16

7

www.vishay.com

SOLDER PROFILE

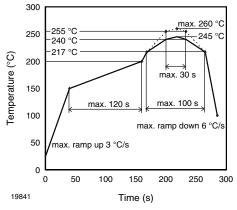


Fig. 21 - Lead (Pb)-free Reflow Solder Profile according to J-STD-020 **Vishay Semiconductors**

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited Conditions: $T_{amb} < 30$ °C, RH < 85 % Moisture sensitivity level 1, according to J-STD-020

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.