imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

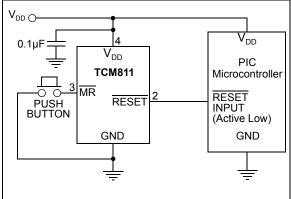
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

4-Pin Reset Monitors

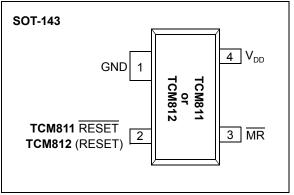

Features

- Precision V_{DD} Monitor for 2.0V, 2.8V, 3.0V, 3.3V, 5.0V Nominal Supplies
- · Manual Reset Input
- 140 ms Minimum RESET Output Duration
- RESET Output Valid to V_{DD} = 1.0V (TCM811)
- Low 6 µA (typ.) Supply Current
- V_{DD} Transient Immunity
- Small 4-Pin SOT-143 Package
- No External Components
- Replacement for MAX811/812 and Offers a Lower Threshold Voltage Option
- Push-Pull RESET Output
- Temperature Range:
 - Commercial (C) -40°C to +85°C

Applications

- Computers
- Embedded Systems
- · Battery Powered Equipment
- Critical Microcontroller Power Supply Monitoring

Typical Application Circuit


General Description

The TCM811 and TCM812 are cost effective system supervisory circuits designed to monitor V_{DD} in digital systems and provide a reset signal to the host controller when necessary. A manual reset input is provided to override the reset monitor and is suitable for use as a push-button reset. No external components are required.

The reset output is driven active within 20 μ s (5 μ s for F version) of V_{DD} falling through the reset voltage threshold. RESET is maintained active for a minimum of 140 ms after V_{DD} rises above the reset threshold. The TCM812 has an active high <u>RESET</u> output while the TCM811 has an active low <u>RESET</u> output. The output of the TCM811 is valid down to V_{DD} = 1V. Both devices are available in a 4-Pin SOT-143 package, specified with a temperature range of -40°C to +85°C.

The TCM811/TCM812 are optimized to reject fast transient glitches on the V_{DD} line. A low supply current of 6 μ A (V_{DD} = 3.3V) makes these devices ideal for battery powered applications.

Package Types:

1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage (V _{DD} to GND)	+6.0V
RESET, RESET	0.3V to (V _{DD} + 0.3V)
Input Current, V _{DD}	20 mA
Output Current, RESET, RESET	20 mA
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Maximum Junction Temperature, T _s	150°C

ELECTRICAL CHARACTERISTICS

 V_{DD} = 5V for L/M versions, V_{DD} = 3.3V for T/S versions, V_{DD} = 3V for R version, V_{DD} = 2.0V for F version. Unless otherwise noted, T_A = -40°C to +85°C. Typical values are at T_A = +25°C. (**Note 1**)

Parameters	Sym	Min	Тур	Мах	Units	Conditions	
V _{DD} Range	V _{DD}	1.0 1.1	_	5.5 5.5	V	TCM811 TCM812	
Supply Current	I _{CC}	_	6	15	μA	TCM81_L/M, V _{DD} = 5.5V, I _{OUT} = 0	
		_	4.75	10	μA	TCM81_R/S/T/F, V _{DD} = 3.6V, I _{OUT} = 0	
Reset Threshold	V _{TH}	4.54 4.50	4.63 —	4.72 4.75	V V	TCM81_L: $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
		4.30 4.25	4.38 —	4.46 4.50	V V	TCM81_M: $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
		3.03 3.00	3.08	3.14 3.15	V V	TCM81_T: $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
		2.88 2.85	2.93 —	2.98 3.00	V V	TCM81_S: $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
		2.58 2.55	2.63	2.68 2.70	V V	TCM81_R: $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
		1.71 1.70	1.75 —	1.79 1.80	V V	TCM81_F: $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Reset Threshold Tempco		_	30	_	ppm/° C		
V _{DD} to Reset Delay		_	20		μs	V _{DD} = V _{TH} to V _{TH} –125 mV; TCM81_L/M	
		—	5		μs	V _{DD} = V _{TH} to V _{TH} –125 mV; TCM81_R/S/T/F	
Reset Active Timeout Period	t _{RP}	140	280	560	ms	$V_{DD} = V_{TH(MAX)}$	
MR Minimum Pulse Width	t _{MR}	10	—	-	μs		
MR Glitch Immunity		_	100	_	ns		
MR to Reset Propagation Delay	t _{MD}	—	0.5		μs		

Note 1: Production testing done at $T_A = +25^{\circ}C$ and $+85^{\circ}C$, overtemperature limits are tested with periodic QA tests in production.

*Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

V_{DD} = 5V for L/M versions, V_{DD} = 3.3V for T/S versions, V_{DD} = 3V for R version, V_{DD} = 2.0V for F version. Unless otherwise noted, T_A = -40°C to +85°C. Typical values are at T_A = +25°C. (Note 1)						
Parameters	Sym	Min	Тур	Max	Units	Conditions
MR Input Threshold	V _{IH}	2.3	—	—	V	V _{DD} > V _{TH(MAX),} TCM81_L/M
		0.7 V _{DD}	—	—	V	$V_{DD} > V_{TH(MAX)}$, TCM81_R/S/T/F
	V _{IL}	-	—	0.8	V	V _{DD} > V _{TH(MAX),} TCM81_L/M
		—	—	0.25 V _{DD}	V	$V_{DD} > V_{TH(MAX)}$, TCM81_R/S/T/F
MR Pull-up Resistance		10	20	40	kΩ	
RESET Output Voltage Low (TCM811)	V _{OL}	_	_	0.3	V	TCM811R/S/T only; $I_{SINK} = 1.2 \text{ mA}, V_{DD} = V_{TH(MIN)}$
			—	0.4	V	TCM811F only; I_{SINK} = 500 µA, V_{DD} = $V_{TH(MIN)}$
			—	0.3	V	TCM811L/M only; $I_{SINK} = 3.2 \text{ mA}, V_{DD} = V_{TH(MIN)}$ $I_{SINK} = 3.2 \text{ mA}, V_{DD} = V_{TH(MIN)}$
RESET Output Voltage High (TCM811)	V _{OH}	0.8 V _{DD}	—	—	V	TCM811R/S/T/F only; I_{SOURCE} = 500 µA, $V_{DD} > V_{TH(MAX)}$
		V _{DD} - 1.5	—	—	V	TCM811L/M only; I_{SOURCE} = 800 µA, $V_{DD} > V_{TH(MAX)}$
RESET Output Voltage Low (TCM812)	V _{OL}		—	0.2	V	TCM812F only, I_{SINK} = 500 µA, V_{DD} = $V_{TH(MAX)}$
			—	0.3	V	TCM812R/S/T only, I_{SINK} = 1.2 mA, V_{DD} = $V_{TH(MAX)}$
		—	_	0.4	V	TCM812L/M only, I_{SINK} = 1.2 mA, V_{DD} = $V_{TH(MAX)}$
RESET Output Voltage High (TCM812)	V _{OH}	0.8 V _{DD}	—	—	V	I_{SOURCE} = 150 µA, $V_{DD} \le V_{TH(MIN)}$

Note 1: Production testing done at T_A = +25°C and +85°C, overtemperature limits are tested with periodic QA tests in production.

2.0 TYPICAL PERFORMANCE CHARACTERISTICS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

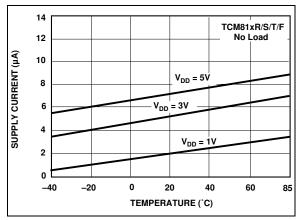


FIGURE 2-1: Supply Current vs. Temperature.

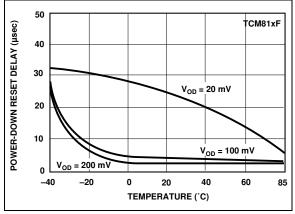


FIGURE 2-2: Power-Down Reset Delay vs. Temperature.

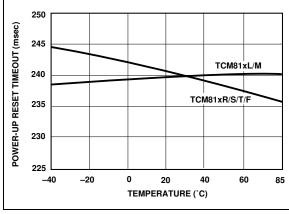


FIGURE 2-3: Power-Up Reset Timeout vs. Temperature.

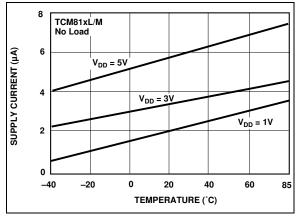


FIGURE 2-4: Supply Current vs. Temperature.

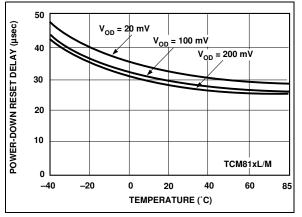
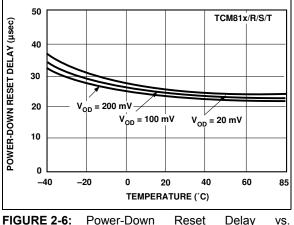
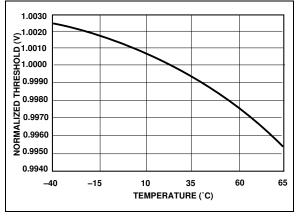




FIGURE 2-5: Power-Down Reset Delay vs. Temperature.

FIGURE 2-6: Power-Down Reset Delay vs. Temperature.

FIGURE 2-7: Normalized Reset Threshold vs. Temperature.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin No.	Symbol	Description
1	GND	Ground
2	RESET (TCM811)	$\ensuremath{\overline{RESET}}$ push-pull output remains low while V_{DD} is below the reset voltage threshold, and for at least 140 ms (min.) after V_{DD} rises above reset threshold
2	RESET (TCM812)	Reset push-pull output remains high while V_{DD} is below the reset voltage threshold, and for at least 140 ms (min.) after V_{DD} rises above reset threshold
3	MR	Manual Reset input generates a Reset when \overline{MR} is below V _{IL}
4	V _{DD}	Supply voltage

3.1 Ground Terminal (GND)

GND provides the negative reference for the analog input voltage. Typically, the circuit ground is used.

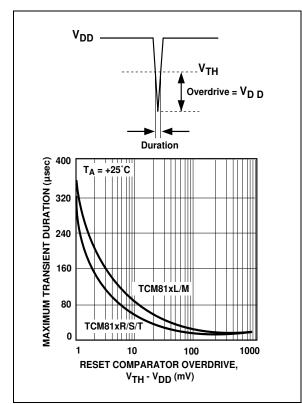
3.2 Reset Output (RESET) (TCM811)

3.3 Reset Output (RESET) (TCM812)

RESET output remains high while V_{DD} is below the Reset voltage threshold (V_{TRIP}). Once the device voltage (V_{DD}) returns to a high level ($V_{TRIP} + V_{HYS}$), the device will remain in Reset for the Reset delay timer (T_{RST}). After that time expires, the RESET pin will be driven to the low state.

3.4 Manual Reset (MR)

The Manual Reset $(\overline{\text{MR}})$ input pin allows a push button switch to easily be connected to the system. When the push button is depressed, it forces a system Reset. This pin has circuitry that filters noise that may be present on the MR signal.


The $\overline{\text{MR}}$ pin is active-low and has an internal pull-up resistor.

3.5 Supply Voltage (V_{DD})

 V_{DD} can be used for power supply monitoring or a voltage level that requires monitoring.

4.0 APPLICATIONS INFORMATION

The TCM811/TCM812 provides accurate V_{DD} monitoring and reset timing during power-up, powerdown, and brownout/sag conditions. These devices also reject negative-going transients (glitches) on the power supply line. Figure 4-1 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive that is under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power-down. Transient immunity can be improved by adding a 0.1 µF capacitor in close proximity to the V_{DD} pin of the TCM811/TCM812.

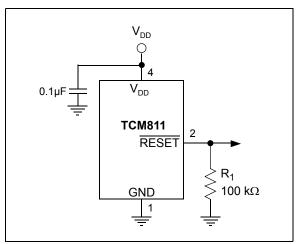


FIGURE 4-1: Maximum Transient Duration vs. Overdrive for Glitch Rejection at +25°C.

4.1 RESET Signal Integrity During Power-Down

The TCM811 RESET push-pull output is valid to V_{DD} = 1.0V. Below this voltage the output becomes an "open circuit" and does not sink current. This means CMOS logic inputs to the microcontroller will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage. However, in situations where RESET must be maintained valid to V_{DD} = 0V, a pull-down resistor must be connected from RESET to ground to discharge stray capacitances and hold the output low (Figure 4-2). This resistor value, though not critical, should be chosen

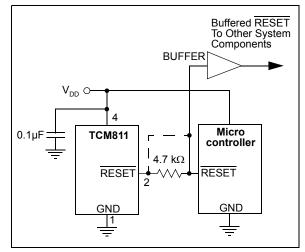

such that it does not appreciably load $\overline{\text{RESET}}$ under normal operation (100 k Ω will be suitable for most applications). Similarly, a pull-up resistor to V_{DD} is required for the TCM812 to ensure a valid high RESET for V_{DD} below 1.1V.

FIGURE 4-2: The addition of R_1 at the <u>RESET</u> output of the TCM811 ensures that the RESET output is valid to $V_{DD} = 0V$.

4.2 Controllers and Processors With Bidirectional I/O Pins

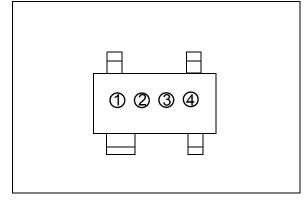

Some microcontrollers have bidirectional reset pins. Depending on the current drive capability of the controller pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 k Ω resistor in series with the output of the TCM811/TCM812 (Figure 4-3). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line. If the other components are required to follow the reset I/O of the microcontroller, the buffer should be connected as shown with the solid line.

FIGURE 4-3: Interfacing the TCM811 to a Bidirectional Reset I/O.

5.0 PACKAGING INFORMATION

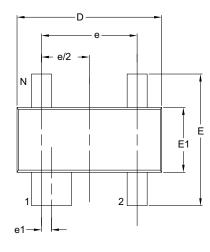
5.1 Package Marking Information

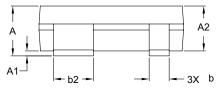
① & ② = part number code + reset threshold voltage (two-digit code)

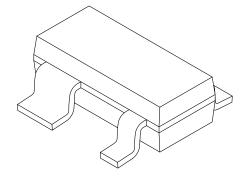
Part Number	(V)	TCM811 Code
TCM811LERCTR	4.63	U1
TCM811MERCTR	4.38	U2
TCM811TERCTR	3.08	U3
TCM811SERCTR	2.93	U4
TCM811RERCTR	2.63	U5
TCM811FERCTR	1.75	U7
Part Number	(V)	TCM812 Code
Part Number TCM812LERCTR	(V) 4.63	
		Code
TCM812LERCTR	4.63	Code V1
TCM812LERCTR TCM812MERCTR	4.63 4.38	Code V1 V2
TCM812LERCTR TCM812MERCTR TCM812TERCTR	4.63 4.38 3.08	Code V1 V2 V3

③ represents year and two-month period code

4 represents production lot ID code


Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.




5.2 Taping Form

4-Lead Plastic Small Outline Transistor (RC) [SOT-143]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dim	ension Limits	MIN	NOM	MAX	
Number of Pins	N	4			
Pitch	е	1.92 BSC			
Pin1 Offset	e1	0.20 BSC			
Overall Height	А	0.80	-	1.22	
Molded Package Thickness	A2	0.75	0.90	1.07	
Standoff §	A1	0.01	-	0.15	
Overall Width	E	2.10	-	2.64	
Molded Package Width	E1	1.20	1.30	1.40	
Overall Length	D	2.67	2.90	3.05	
Foot Length	L	0.13	0.50	0.60	
Footprint	L1		0.54 REF		
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.08	-	0.20	
Lead 1 Width	b1	0.76	-	0.94	
Leads 2, 3 & 4 Width	b	0.30	-	0.54	

Notes:

- 1. § Significant Characteristic.
- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-031B

NOTES:

APPENDIX A: REVISION HISTORY

Revision C (February 2007)

- Section 5.0 "Packaging Information": Corrected SOT-143 packaging information.
- Section 3.0 "Pin Descriptions": Added pin descriptions.
- Added disclaimer on package outline drawing.
- Updated package outline drawing.
- Section 1.0 "Electrical Characteristics": Reformatted Electrical Characteristics

Revision B (January 2002)

• Undocumented changes.

Revision A (October 2001)

• Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x x xxxx	Examples:
Device	V _{DD} Temperature Package Reset Range Threshold	a) TCM811LERCTR: 4.63V b) TCM811MERCTR: 4.38V c) TCM811TERCTR: 3.08V
Device:	TCM811: 4-Pin μ P Reset Monitor (RESET low) TCM812: 4-Pin μ P Reset Monitor (RESET high)	d) TCM811SERCTR: 2.93V e) TCM811RERCTR: 2.63V f) TCM811FERCTR: 1.75V
Threshold Voltage: (typical)	$ \begin{array}{rcl} {\sf L} &=& 4.63 {\sf V} \\ {\sf M} &=& 4.38 {\sf V} \\ {\sf T} &=& 3.08 {\sf V} \\ {\sf S} &=& 2.93 {\sf V} \\ {\sf R} &=& 2.63 {\sf V} \\ {\sf F} &=& 1.75 {\sf V} \end{array} $	a) TCM812LERCTR: 4.63V b) TCM812MERCTR: 4.38V c) TCM812TERCTR: 3.08V d) TCM812SERCTR: 2.93V e) TCM812RERCTR: 2.63V f) TCM812FERCTR: 1.75V
Temperature Range:	$E = -40^{\circ}C \text{ to } +85^{\circ}C$	
Package:	RCTR = Plastic Small Outline Transistor (RC) SOT-143, 4 lead, (tape and reel).	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV <u>ISO/TS 16949:2002</u>

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

12/08/06