imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

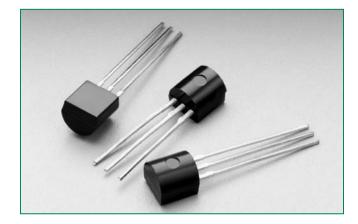
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TCR22-x Series RoHS

Littelfuse

Expertise Applied Answers Delivered


Main Features

Symbol

I_{T(RMS)}

I_{GT}

V_{DRM}/V_{RRM}

Value

1.5

400 to 600

200

Unit

А

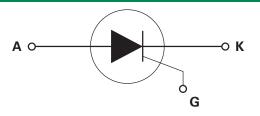
V

μΑ

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Sensitive gate SCRs are easily triggered with microAmps of current as furnished by sense coils, proximity switches, and microprocessors.


Features & Benefits

- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 600 V
- Surge capability up to 20 Ă

Applications

Typical applications are capacitive discharge systems for strobe lights and gas engine ignition. Also controls for power tools, home/brown goods and white goods appliances.

Schematic Symbol

Test Conditions Value Unit I_{T(RMS)} RMS on-state current $T_c = 40^{\circ}C$ 1.5 А single half cycle; f = 50Hz; 16 T_{i} (initial) = 25°C Peak non-repetitive surge current А I_{TSM} single half cycle; f = 60Hz; 20 $T_{\rm L}$ (initial) = 25°C l²t I²t Value for fusing t_o = 8.3 ms 1.6 A²s di/dt Critical rate of rise of on-state current f = 60 Hz ; T = 110°C 50 A/µs I_{GM} 1 А Peak gate current $T_{1} = 110^{\circ}C$ P_{G(AV)} Average gate power dissipation T₁ = 110°C 0.1 W T_{stg} °С Storage temperature range -40 to 150 °C -40 to 110 Τ. Operating junction temperature range

Absolute Maximum Ratings – Sensitive S			
Symbol	Parameter		

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

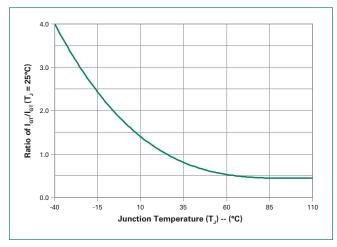
Symbol	Test Conditions	Value	Unit		
I _{gt}	V 6V/ P 100 0		MAX.	200	μA
V _{gt}	$V_{\rm D} = 6V; R_{\rm L} = 100 \Omega$		MAX.	0.8	V
-1/-1+		400V	N.41N1	40	V/µs
dv/dt	$V_{\rm D} = V_{\rm DRM}$; $R_{\rm GK} = 1 {\rm k} \Omega$	600V	MIN.	30	
V _{gd}	$V_{_{D}} = V_{_{DRM}}; R_{_{L}} = 3.3 \text{ k}\Omega; T_{_{J}} = 110^{\circ}\text{C}$		MIN.	0.25	V
V _{grm}	$I_{gR} = 10 \mu A$		MIN.	6	V
I _H	I _T = 200mA (initial)		MAX.	5	mA
t _q	(1)		MAX.	50	μs
t _{gt}	$I_{g} = 2 \times I_{gT}$; PW = 15 μ s; $I_{T} = 3A$		TYP.	3.5	μs

(1) I_T =1A; t_p =50µs; dv/dt=5V/µs; di/dt=-10A/µs

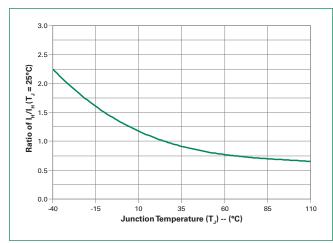
Static Characteristics							
Symbol	Test Conditions Value Unit						
V _{TM}	I _T = 3	3A; t _p = 380 μs	; t _p = 380 μs MAX.			V	
		T 25%C	400V		1		
I _{drm} / I _{rrm}	$V_{\rm drm} = V_{\rm rrm}$	$T_J = 25^{\circ}C$	600V	MAX.	2	μA	
		T _J = 11	0°C		100		

Thermal Resistances

Symbol	Parameter	Value	Unit
R _{θ(J-C)}	Junction to case (AC)	50	°C/W
R _{θ(J-A)}	Junction to ambient	160	°C/W



1.5 Amp Sensitive SCRs


Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

Littelfuse

Expertise Applied Answers Delivered

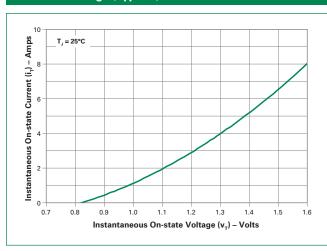


Figure 5: On-State Current vs. On-State Voltage (Typical)

Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

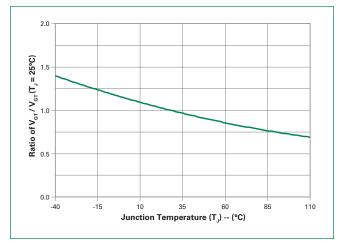


Figure 4: Normalized DC Latching Current vs. Junction Temperature

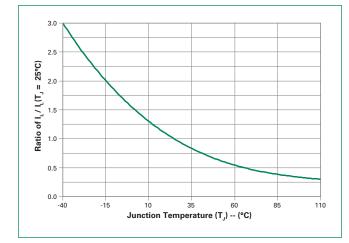
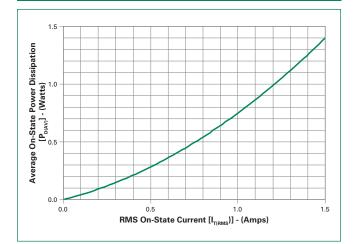



Figure 6: Power Dissipation (Typical) vs. RMS On-State Current

©2008 Littelfuse, Inc. Specifications are subject to change without notice. Please refer to http://www.littelfuse.com for current information.

Figure 7: Maximum Allowable Case Temperature vs. RMS On-State Current

115 Maximum Allowable Case Temperature (T_c) - °C 105 95 85 75 65 55 CURRENT WAVEFORM: Sinu idal 45 LOAD: Resistive or Inductive CONDUCTION ANGLE: 180° 35 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 RMS On-State Current $[I_{_{T(RMS)}}]$ - Amps

Figure 9: Maximum Allowable Ambient Temperature vs. RMS On-State Current

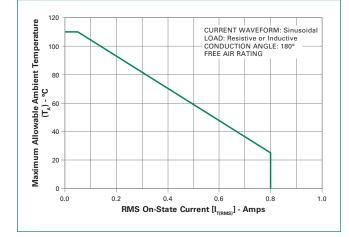
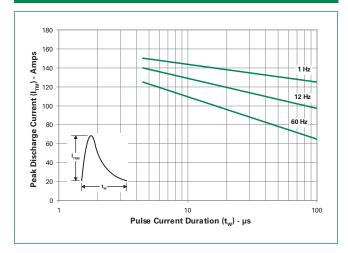
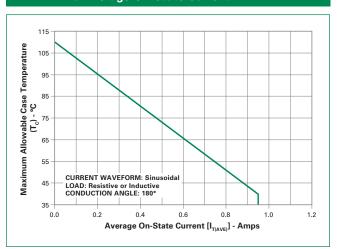
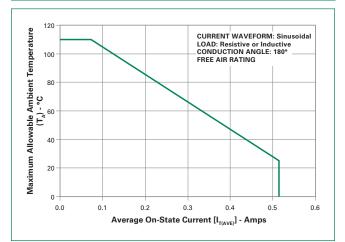


Figure 11: Peak Repetitive Capacitor Discharge Current

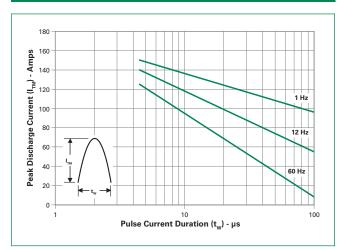
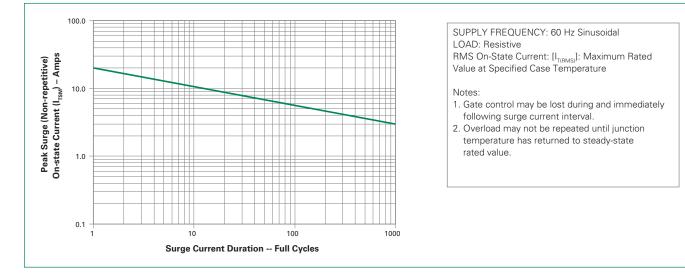
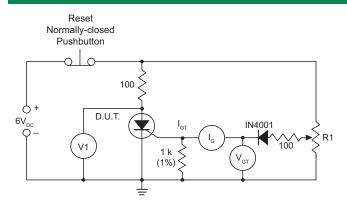

Figure 8: Maximum Allowable Case Temperature vs. Average On-State Current

Figure 12: Peak Repetitive Sinusoidal Pulse Current



1.5 Amp Sensitive SCRs


Figure 13: Surge Peak On-State Current vs. Number of Cycles

ittelfuse

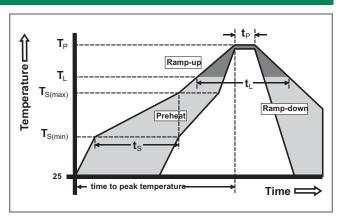
Expertise Applied | Answers Delivered

Figure 14: Simple Test Circuit for Gate Trigger Voltage and Current

Note: V1 — 0 V to 10 V dc meter $V_{GT} = 0$ V to 1 V dc meter $I_G = 0$ mA to 1 mA dc milliammeter R1 = 1 k potentiometer

To measure gate trigger voltage and current, raise gate voltage (V_{GT}) until meter reading V1 drops from 6 V to 1 V. Gate trigger voltage is the reading on $V_{\rm gT}$ just prior to V1 dropping. Gate trigger current I_{ct} Can be computed from the relationship

$$I_{GT} = I_{G} - \frac{V_{GT}}{1000} \text{Amps}$$


where I_{c} is reading (in amperes) on meter just prior to V1 dropping

Note: IGT may turn out to be a negative quantity (trigger current flows out from gate lead). If negative current occurs, $I_{_{GT}}$ value is not a valid reading. Remove 1 k resistor and use $I_{_{G}}$ as the more correct $I_{_{GT}}$ value. This will occur on 12 µA gate products.

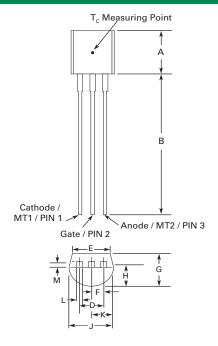
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 190 secs	
Average ra (T _L) to pea	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
Rellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260+0/-5 °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Finish 100% Matt Tin-plated/Pb-free Solder Dipped Dipped			
Body Material	UL recognized epoxy meeting flammability classification 94V-0		
Lead Material	Copper Alloy		

Design Considerations


Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell- time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

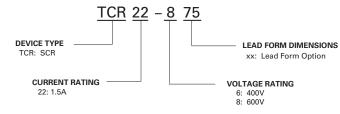
Dimensions – TO-92 (E Package)

Dimension	Inches		Millimeters		
Dimension	Min	Max	Min	Max	
А	0.176	0.196	4.47	4.98	
В	0.500		12.70		
D	0.095	0.105	2.41	2.67	
E	0.150		3.81		
F	0.046	0.054	1.16	1.37	
G	0.135	0.145	3.43	3.68	
Н	0.088	0.096	2.23	2.44	
J	0.176	0.186	4.47	4.73	
К	0.088	0.096	2.23	2.44	
L	0.013	0.019	0.33	0.48	
Μ	0.013	0.017	0.33	0.43	

All leads insulated from case. Case is electrically nonconductive.

Product Selector

Part Number	Port Number	Voltage		Gate Sensitivity	Туре	Package	
	400V	600V			Type	I ackaye	
TCR22-6	Х				200µA	Sensitive SCR	TO-92
TCR22-8		Х			200μΑ	Sensitive SCR	TO-92


Note: x = Voltage

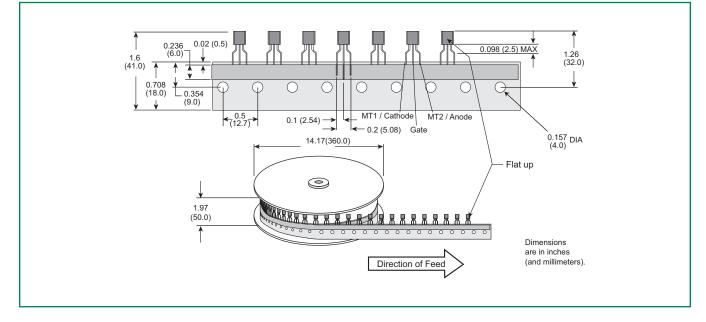
Packing Options

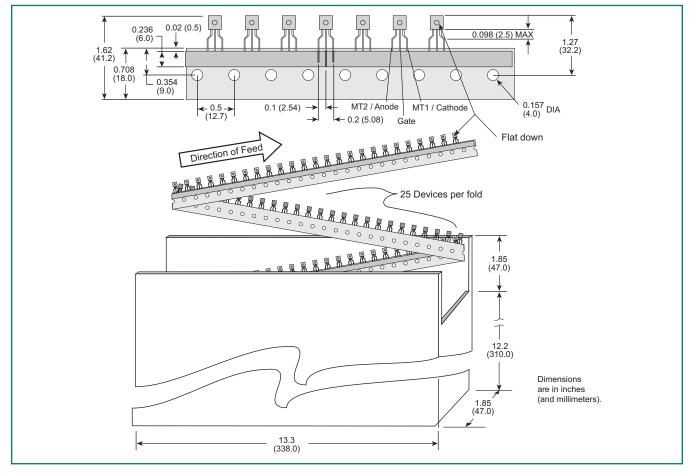
Part Number	Marking	Weight	Packing Mode	Base Quantity
TCR22-x	TCR22-x	0.19 g	Bulk	2000
TCR22-xRP	TCR22-x	0.19 g	Reel Pack	2000
TCR22-xAP	TCR22-x	0.19 g	Ammo Pack	2000

Note: x = Voltage

Part Numbering System

Part Marking System




TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

