

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TCS3472

Color Light-to-Digital Converter with IR Filter

General Description

The TCS3472 device provides a digital return of red, green, blue (RGB), and clear light sensing values. An IR blocking filter, integrated on-chip and localized to the color sensing photodiodes, minimizes the IR spectral component of the incoming light and allows color measurements to be made accurately. The high sensitivity, wide dynamic range, and IR blocking filter make the TCS3472 an ideal color sensor solution for use under varying lighting conditions and through attenuating materials.

The TCS3472 color sensor has a wide range of applications including RGB LED backlight control, solid-state lighting, health/fitness products, industrial process controls and medical diagnostic equipment. In addition, the IR blocking filter enables the TCS3472 to perform ambient light sensing (ALS). Ambient light sensing is widely used in display-based products such as cell phones, notebooks, and TVs to sense the lighting environment and enable automatic display brightness for optimal viewing and power savings. The TCS3472, itself, can enter a lower-power wait state between light sensing measurements to further reduce the average power consumption.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of TCS3472, Color Light-to-Digital Converter with IR Filter are listed below:

Figure 1: **Added Value of Using TCS3472**

Benefits	Features
Enables accurate color and light sensing measurements under varying lighting conditions by minimizing IR and UV spectral component effects	 Red, Green, Blue (RGB), and Clear Light Sensing with IR blocking filter Programmable analog gain and integration time 3,800,000:1 dynamic range Very high sensitivity - ideally suited for operation behind dark glass
Programmable interrupt pin enables level-style interrupts when pre-set values are exceeded, thus reducing companion micro-processor overhead	 Maskable interrupt Programmable upper and lower thresholds with persistence filter

Benefits	Features
Enabling a low-power wait-state between RGBC measurements to reduce average power consumption	 Power management Low power - 2.5μA sleep state 65μA wait state with programmable wait state time from 2.4ms to > 7 seconds
Digital interfaces are less susceptible to noise	 I²C fast mode compatible interface Data rates up to 400 kbit/s Input voltage levels compatible with V_{DD} or 1.8 V_{BUS}
Backward compatibility enables interchangeability and re-usability in systems	Register set and pin compatible with the TCS3x71 series
Reduces PCB space requirements while simplifying designs	Small 2mm x 2.4mm dual flat no-lead FN package

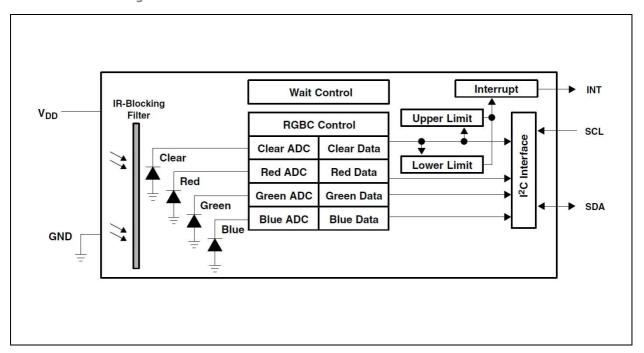
Applications

The applications of TCS3472 include:

- RGB LED backlight control
- Light color temperature measurement
- Ambient light sensing for display backlight control
- Fluid and gas analysis
- Product color verification and sorting

End Products and Market Segments

- TVs, mobile handsets, tablets, computers, and monitors
- Consumer and commercial printing
- Medical and health fitness
- Solid state lighting (SSL) and digital signage
- Industrial automation


Page 2ams DatasheetDocument Feedback[v1-03] 2018-Mar-14

Block Diagram

The functional blocks of this device are shown below:

Figure 2: Functional Block Diagram

ams Datasheet Page 3
[v1-03] 2018-Mar-14 Document Feedback

Detailed Description

The TCS3472 light-to-digital converter contains a 3×4 photodiode array, four analog-to-digital converters (ADC) that integrate the photodiode current, data registers, a state machine, and an I^2C interface. The 3×4 photodiode array is composed of red-filtered, green-filtered, blue-filtered, and clear (unfiltered) photodiodes. In addition, the photodiodes are coated with an IR-blocking filter. The four integrating ADCs simultaneously convert the amplified photodiode currents to a 16-bit digital value. Upon completion of a conversion cycle, the results are transferred to the data registers, which are double-buffered to ensure the integrity of the data. All of the internal timing, as well as the low-power wait state, is controlled by the state machine.

Communication of the TCS3472 data is accomplished over a fast, up to 400 kHz, two-wire I²C serial bus. The industry standard I²C bus facilitates easy, direct connection to microcontrollers and embedded processors.

In addition to the I²C bus, the TCS3472 provides a separate interrupt signal output. When interrupts are enabled, and user-defined thresholds are exceeded, the active-low interrupt is asserted and remains asserted until it is cleared by the controller. This interrupt feature simplifies and improves the efficiency of the system software by eliminating the need to poll the TCS3472. The user can define the upper and lower interrupt thresholds and apply an interrupt persistence filter. The interrupt persistence filter allows the user to define the number of consecutive out-of-threshold events necessary before generating an interrupt. The interrupt output is open-drain, so it can be wire-ORed with other devices.

Page 4

Document Feedback

[v1-03] 2018-Mar-14

Pin Assignment

The TCS3472 pin assignment is described below.

Figure 3: Pin Diagram

Package FN Dual Flat No-Lead (Top View): Package drawing is not to scale.

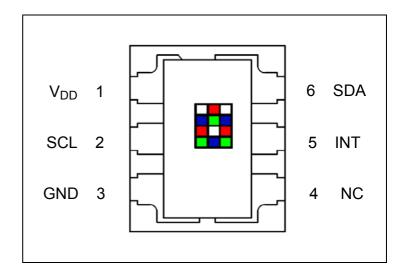


Figure 4: Pin Description

Pin Number	Pin Name	Pin Type	Description
1	V _{DD}		Supply voltage
2	SCL	Input	I ² C serial clock input terminal – clock signal for I ² C serial data
3	GND		Power supply ground. All voltages are referenced to GND
4	NC	Output	No connect - do not connect
5	INT	Output	Interrupt - open drain (active low).
6	SDA	Input/Output	I ² C serial data I/O terminal - serial data I/O for I ² C.

ams Datasheet Page 5
[v1-03] 2018-Mar-14 Document Feedback

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

Figure 5:
Absolute Maximum Ratings over Operating Free-Air Temperature Range (unless otherwise noted)

Parameter	Min	Max	Units	Comments
Supply voltage, V _{DD}		3.8	V	All voltages are with respect to GND
Input terminal voltage	- 0.5	3.8	V	
Output terminal voltage	- 0.5	3.8	V	
Output terminal current	- 1	20	mA	
Storage temperature range, T _{strg}	- 40	85	°C	
ESD tolerance, human body model	±	2000	V	

Page 6

Document Feedback

[v1-03] 2018-Mar-14

Electrical Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Figure 6: Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{DD}	Supply voltage	TCS34725 ($I^2CV_{BUS} = V_{DD}$)	2.7	3	3.6	V
v _{DD} Supply voltage	Supply voltage	TCS34727 ($I^2CV_{BUS} = 1.8V$)	2.7	3	3.3	V
T _A	Operating free - air temperature		-30		70	°C

Figure 7: Operating Characteristics, $V_{DD} = 3 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$ (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		Active		235	330	
I _{DD}	Supply current	Wait state		65		μΑ
		Sleep state - no I ² C activity		2.5	10	
V _{OL}	INT SDA output low voltage	3 mA sink current	0		0.4	V
VOL	in 3DA output low voltage	6 mA sink current 0		0.6	v	
I _{LEAK}	Leakage current, SDA, SCL, INT pins		-5		5	μΑ
	Leakage current, LDR pin		-5		5	
V _{IH}	SCL SDA input high voltage	TCS34725	0.7 V _{DD}			V
· in		TCS34727	1.25			v
V _{IL}	SCL SDA input low voltage	TCS34725			0.3 V _{DD}	V
- 11	See 357 input low Voltage	TCS34727			0.54	v

ams Datasheet Page 7
[v1-03] 2018-Mar-14 Document Feedback

Figure 8:

Optical Characteristics, V_{DD}=3 V, T_A= 25°C, AGAIN = 16, ATIME = 0xF6 (unless otherwise noted)⁽¹⁾

Parameter	Test Conditions	Red Channel		Green Blue Channel Channel			Clear Channel			Unit	
Conditions	Min	Max	Min	Max	Min	Max	Min	Тур	Max		
R _e	$\lambda_{D} = 465 \text{ nm}^{(2)}$	0%	15%	10%	42%	65%	88%	11.0	13.8	16.6	counts
Irradiance responsivity	$\lambda_{D} = 525 \text{ nm}^{(3)}$	4%	25%	60%	85%	10%	45%	13.2	16.6	20.0	/μW /cm ²
responsivity	$\lambda_{\rm D} = 615 \rm nm^{(4)}$	80%	110%	0%	14%	5%	24%	15.6	19.5	23.4	7011

Notes:

- 1. The percentage shown represents the ratio of the respective red, green, or blue channel value to the clear channel value.
- 2. The 465 nm input irradiance is supplied by an InGaN light-emitting diode with the following characteristics: dominant wavelength $\lambda_D = 465$ nm, spectral halfwidth $\Delta\lambda_2' = 22$ nm.
- 3. The 525 nm input irradiance is supplied by an InGaN light-emitting diode with the following characteristics: dominant wavelength $\lambda_D = 525$ nm, spectral halfwidth $\Delta\lambda_2' = 35$ nm.
- 4. The 615 nm input irradiance is supplied by a AlInGaP light-emitting diode with the following characteristics: dominant wavelength $\lambda_D = 615$ nm, spectral halfwidth $\Delta \lambda_2 = 15$ nm.

Page 8

Document Feedback

[v1-03] 2018-Mar-14

Figure 9: RGBC Characteristics, V_{DD} = 3 V, T_A = 25°C, AGAIN = 16, AEN = 1 (unless otherwise noted)

Parameter	Conditions	Min	Тур	Max	Units
Dark ADC count value	Ee = 0, AGAIN = 60×, ATIME = 0xD6 (100 ms)	0	1	5	counts
ADC integration time step size	ATIME = 0xFF	2.27	2.4	2.56	ms
ADC number of integration steps (1)		1		256	steps
ADC counts per step (1)		0		1024	counts
ADC count value (1)	ATIME = 0xC0 (153.6 ms)	0		65535	counts
	4X	3.8	4	4.2	
Gain scaling, relative to 1X gain setting	16X	15	16	16.8	X
	60X	58	60	63	

Note(s):

1. Parameter ensured by design and is not tested.

Figure 10:

Wait Characteristics, V_{DD} = 3 V, T_A = 25°C, WEN = 1 (unless otherwise noted)

Parameter	Conditions	Channel	Min	Тур	Max	Units
Wait step size	WTIME = 0xFF		2.27	2.4	2.56	ms
Wait number of integration steps (1)			1		256	steps

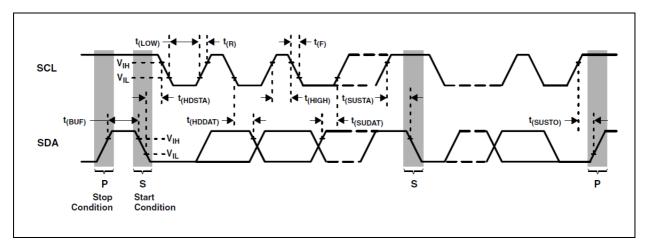
Note(s):

1. Parameter ensured by design and is not tested.

ams Datasheet Page 9
[v1-03] 2018-Mar-14 Document Feedback

Timing Characteristics

The timing characteristics of TCS3472 are given below.


Figure 11: AC Electrical Characteristics, $V_{DD} = 3 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$ (unless otherwise noted)

Parameter	Description	Min	Тур	Max	Units
f _(SCL)	Clock frequency (I ² C only)	0		400	kHz
t _(BUF)	Bus free time between start and stop condition	1.3			μs
t _(HDSTA)	Hold time after (repeated) start condition. After this period, the first clock is generated.	0.6			μs
t _(SUSTA)	Repeated start condition setup time	0.6			μs
t _(SUSTO)	Stop condition setup time	0.6			μs
t _(HDDAT)	Data hold time	0		0.9	μs
t _(SUDAT)	Data setup time	100			ns
t _(LOW)	SCL clock low period	1.3			μs
t _(HIGH)	SCL clock high period	0.6			μs
t _F	Clock/data fall time			300	ns
t _R	Clock/data rise time			300	ns
C _i	Input pin capacitance			10	pF

Note(s):

Timing Diagram

Figure 12: Parameter Measurement Information

Page 10ams DatasheetDocument Feedback[v1-03] 2018-Mar-14

^{1.} Specified by design and characterization; not production tested.

Typical Operating Characteristics

Figure 13:
Photodiode Spectral Responsivity RGBC

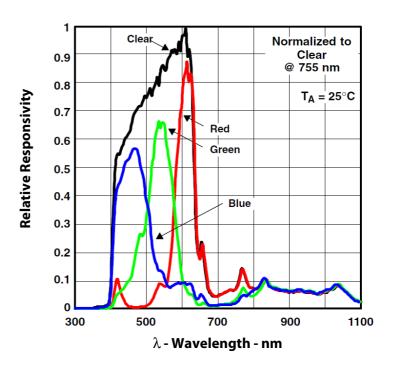
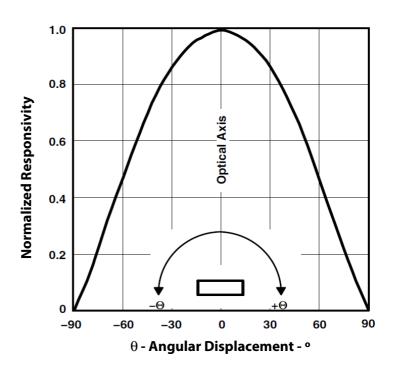



Figure 14: Normalized Responsivity vs. Angular Displacement

ams Datasheet Page 11
[v1-03] 2018-Mar-14 Document Feedback

Figure 15: Normalized I_{DD} vs. V_{DD} and Temperature

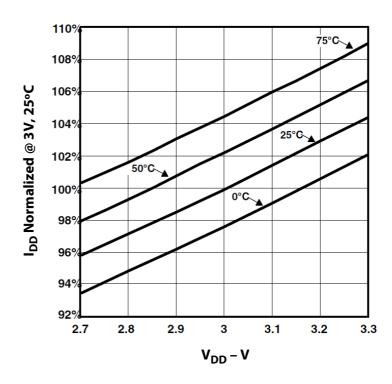
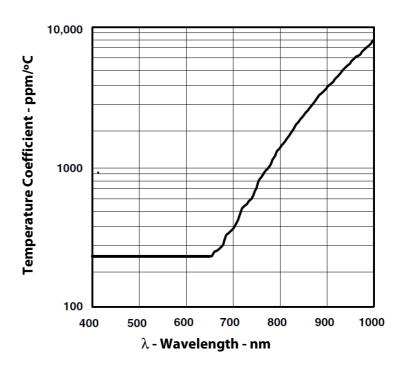
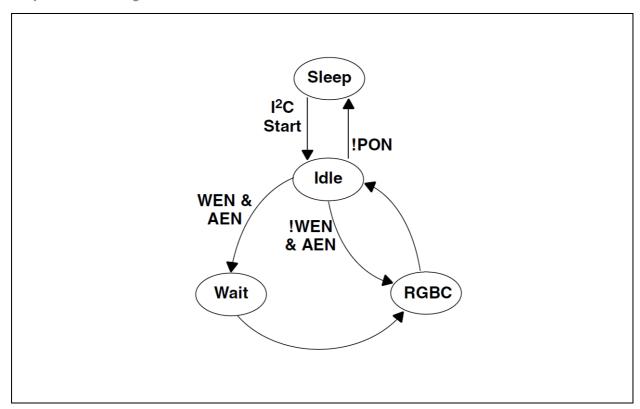



Figure 16: Responsivity Temperature Coefficient

Page 12ams DatasheetDocument Feedback[v1-03] 2018-Mar-14


Principles of Operation

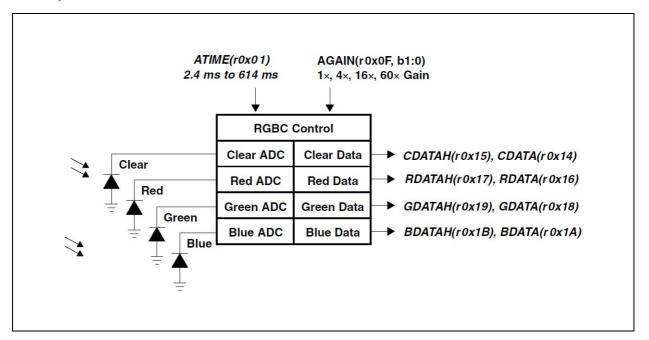
System States

An internal state machine provides system control of the RGBC and power management features of the device. At power up, an internal power-on-reset initializes the device and puts it in a low-power Sleep state.

When a start condition is detected on the I²C bus, the device transitions to the Idle state where it checks the Enable Register (0x00) PON bit. If PON is disabled, the device will return to the Sleep state to save power. Otherwise, the device will remain in the Idle state until the RGBC function is enabled (AEN). Once enabled, the device will execute the Wait and RGBC states in sequence as indicated in Figure 16. Upon completion and return to Idle, the device will automatically begin a new Wait-RGBC cycle as long as PON and AEN remain enabled.

Figure 17: Simplified State Diagram

ams Datasheet Page 13
[v1-03] 2018-Mar-14 Document Feedback



RGBC Operation

The RGBC engine contains RGBC gain control (AGAIN) and four integrating analog-to-digital converters (ADC) for the RGBC photodiodes. The RGBC integration time (ATIME) impacts both the resolution and the sensitivity of the RGBC reading. Integration of all four channels occurs simultaneously and upon completion of the conversion cycle, the results are transferred to the color data registers. This data is also referred to as channel count.

The transfers are double-buffered to ensure that invalid data is not read during the transfer. After the transfer, the device automatically moves to the next state in accordance with the configured state machine.

Figure 18: RGBC Operation

Note(s):

1. In this document, the nomenclature uses the bit field name in italics followed by the register address and bit number to allow the user to easily identify the register and bit that controls the function. For example, the power on (PON) is in register 0x00, bit 0. This is represented as *PON* (*r0x00:b0*).

Page 14

Document Feedback

[v1-03] 2018-Mar-14

The registers for programming the integration and wait times are a 2's compliment values. The actual time can be calculated as follows:

ATIME = 256 - Integration Time / 2.4 ms

Inversely, the time can be calculated from the register value as follows:

Integration Time = $2.4 \text{ ms} \times (256 - \text{ATIME})$

For example, if a 100-ms integration time is needed, the device needs to be programmed to:

$$256 - (100 / 2.4) = 256 - 42 = 214 = 0 \times D6$$

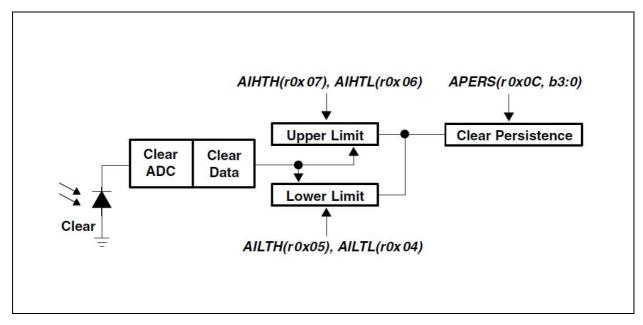
Conversely, the programmed value of 0xC0 would correspond to:

 $(256 - 0xC0) \times 2.4 = 64 \times 2.4 = 154 \text{ ms}.$

Interrupts

The interrupt feature simplifies and improves system efficiency by eliminating the need to poll the sensor for light intensity values outside of a user-defined range. While the interrupt function is always enabled and its status is available in the status register (0x13), the output of the interrupt state can be enabled using the RGBC interrupt enable (AIEN) field in the enable register (0x00).

Two 16-bit interrupt threshold registers allow the user to set limits below and above a desired light level. An interrupt can be generated when the Clear data (CDATA) is less than the Clear interrupt low threshold (AILTx) or is greater than the Clear interrupt high threshold (AIHTx).


It is important to note that the thresholds are evaluated in sequence, first the low threshold, then the high threshold. As a result, if the low threshold is set above the high threshold, the high threshold is ignored and only the low threshold is evaluated.

ams Datasheet Page 15
[v1-03] 2018-Mar-14 Document Feedback

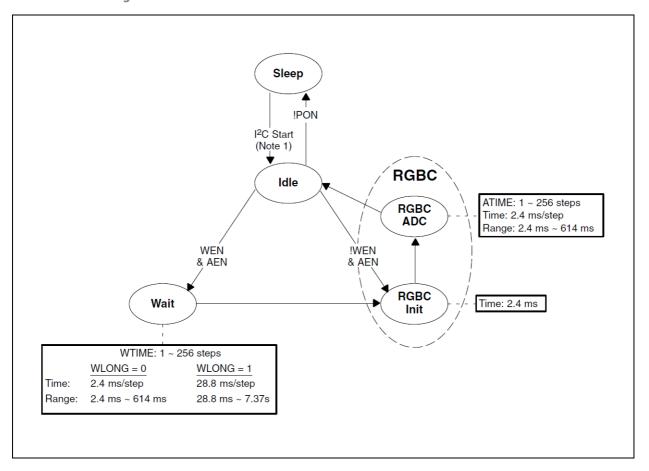
To further control when an interrupt occurs, the device provides a persistence filter. The persistence filter allows the user to specify the number of consecutive out-of-range Clear occurrences before an interrupt is generated. The persistence filter register (0x0C) allows the user to set the Clear persistence filter (APERS) value. See the persistence filter register for details on the persistence filter value. Once the persistence filter generates an interrupt, it will continue until a special function interrupt clear command is received (see command register).

Figure 19: Programmable Interrupt

Page 16

Document Feedback

[v1-03] 2018-Mar-14


System Timing

The system state machine shown in Figure 17 provides an overview of the states and state transitions that provide system control of the device. This section highlights the programmable features, which affect the state machine cycle time, and provides details to determine system level timing.

When the power management feature is enabled (WEN), the state machine will transition to the Wait state. The wait time is determined by WLONG, which extends normal operation by 12× when asserted, and WTIME. The formula to determine the wait time is given in the box associated with the Wait state in Figure 20.

When the RGBC feature is enabled (AEN), the state machine will transition through the RGBC Init and RGBC ADC states. The RGBC Init state takes 2.4 ms, while the RGBC ADC time is dependent on the integration time (ATIME). The formula to determine RGBC ADC time is given in the associated box in Figure 20. If an interrupt is generated as a result of the RGBC cycle, it will be asserted at the end of the RGBC ADC.

Figure 20:
Detailed State Diagram

Notes:

- 1. There is a 2.4 ms warm-up delay if PON is enabled. If PON is not enabled, the device will return to the Sleep state as shown.
- 2. PON, WEN, and AEN are fields in the Enable register (0x00).

ams Datasheet Page 17
[v1-03] 2018-Mar-14 Document Feedback

Power Management

Power consumption can be managed with the Wait state, because the Wait state typically consumes only 65 μ A of I_{DD} current. An example of the power management feature is given below. With the assumptions provided in the example, average I_{DD} is estimated to be 152 μ A.

Figure 21: Power Management

System State Machine State	Programmable Parameter	Programmed Value	Duration	Typical Current
Wait	WTIME	0xEE	43.2 ms	0.065 mA
wait	WLONG	0	73.2 1113	0.003 IIIA
RGBC Init			2.40 ms	0.235 mA
RGBC ADC	ATIME	0xEE	43.2 ms	0.235 mA

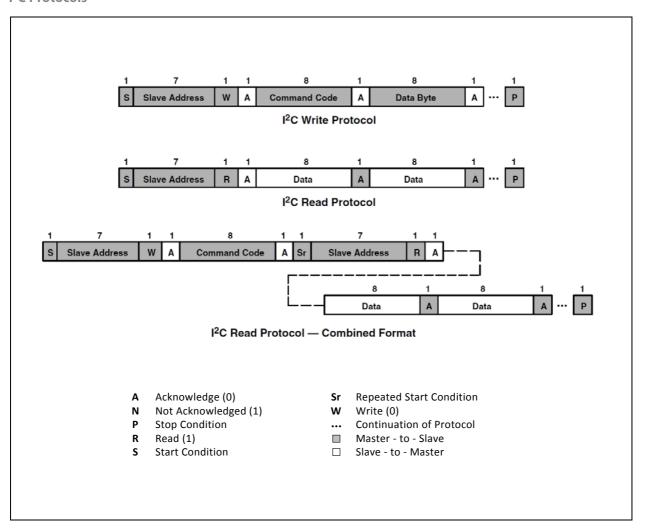
Average
$$I_{DD}$$
 Current = ((43.2 × 0.065) + (43.2 × 0.235) + (2.40 × 0.235)) / 89 \approx 152 μ A

Keeping with the same programmed values as the example, Figure 22 shows how the average I_{DD} current is affected by the Wait state time, which is determined by WEN, WTIME, and WLONG. Note that the worst-case current occurs when the Wait state is not enabled.

Figure 22: Average I_{DD} Current

WEN	WTIME	WLONG	WAIT State	Average I _{DD} Current
0	n/a	n/a	0 ms	291 μΑ
1	0xFF	0	2.40 ms	280 μΑ
1	OXEE	0	43.2 ms	152 μΑ
1	0x00	0	614 ms	82 μΑ
1	0x00	1	7.37 s	67 μΑ

Page 18ams DatasheetDocument Feedback[v1-03] 2018-Mar-14


I²C Protocol

Interface and control are accomplished through an I²C serial compatible interface (standard or fast mode) to a set of registers that provide access to device control functions and output data. The devices support the 7-bit I²C addressing protocol.

The I²C standard provides for three types of bus transaction: read, write, and a combined protocol (Figure 23). During a write operation, the first byte written is a command byte followed by data. In a combined protocol, the first byte written is the command byte followed by reading a series of bytes. If a read command is issued, the register address from the previous command will be used for data access. Likewise, if the MSB of the command is not set, the device will write a series of bytes at the address stored in the last valid command with a register address. The command byte contains either control information or a 5-bit register address. The control commands can also be used to clear interrupts.

The I²C bus protocol was developed by Philips (now NXP). For a complete description of the I²C protocol, please review the NXP I²C design specification at www.i2c-bus.org/references/.

Figure 23: I²C Protocols

ams Datasheet Page 19 **Document Feedback**

Register Description

The TCS3472 is controlled and monitored by data registers and a command register accessed through the serial interface. These registers provide for a variety of control functions and can be read to determine results of the ADC conversions. The register set is summarized in Figure 24.

Figure 24: Register Set

Address	Register Name	R/W	Register Function	Reset Value
	COMMAND	W	Specifies register address	0x00
0x00	ENABLE	R/W	Enables states and interrupts	0x00
0x01	ATIME	R/W	RGBC time	0xFF
0x03	WTIME	R/W	Wait time	0xFF
0x04	AILTL	R/W	Clear interrupt low threshold low byte	0x00
0x05	AILTH	R/W	Clear interrupt low threshold high byte	0x00
0x06	AIHTL	R/W	Clear interrupt high threshold low byte	0x00
0x07	AIHTH	R/W	Clear interrupt high threshold high byte	0x00
0x0C	PERS	R/W	Interrupt persistence filter	0x00
0x0D	CONFIG	R/W	Configuration	0x00
0x0F	CONTROL	R/W	Control	0x00
0x12	ID	R	Device ID	ID
0x13	STATUS	R	Device status	0x00
0x14	CDATAL	R	Clear data low byte	0x00
0x15	CDATAH	R	Clear data high byte	0x00
0x16	RDATAL	R	Red data low byte	0x00
0x17	RDATAH	R	Red data high byte	0x00
0x18	GDATAL	R	Green data low byte	0x00
0x19	GDATAH	R	Green data high byte	0x00
0x1A	BDATAL	R	Blue data low byte	0x00
0x1B	BDATAH	R	Blue data high byte	0x00

The mechanics of accessing a specific register depends on the specific protocol used. See the section on I²C protocols on the previous pages. In general, the COMMAND register is written first to specify the specific control-status-data register for subsequent read/write operations.

Page 20ams DatasheetDocument Feedback[v1-03] 2018-Mar-14

Command Register

The command register specifies the address of the target register for future write and read operations.

Figure 25: Command Register

7	6	5	4	3	2	1	0
CMD	TY	PE			ADDR/SF		

Fields	Bits		Description					
CMD	7	Select Command Register. Must write as 1 when addressing COMMAND register.						
		Selects type of transaction to follow in subsequent data transfers:						
		FIELD VALUE	TRANSACTION TYPE					
		00	Repeated byte protocol transaction					
TYPE	6:5	01	Auto-increment protocol transaction					
		10	Reserved — Do not use					
		11	Special function — See description below					
			ill repeatedly read the same register with each data access. Block ovide auto-increment function to read successive bytes.					
		this field either s control-status-d	ecial function field. Depending on the transaction type, see above, specifies a special function command or selects the specific ata register for subsequent read and write transactions. The field ow only apply to special function commands:					
ADDR/SF	4:0	FIELD VALUE	READ VALUE					
ולעוטטועטו	7.0	00110	Clear channel interrupt clear					
		Other Reserved — Do not write						
		The Clear chann is self-clearing.	el interrupt clear special function clears any pending interrupt and					

ams Datasheet Page 21
[v1-03] 2018-Mar-14 Document Feedback

Enable Register (0x00)

The ENABLE register is used primarily to power the TCS3472 device ON and OFF, and enable functions and interrupts as shown below.

Figure 26: Enable Register

7	6	5	4	3	2	1	0
	Reserved		AIEN	WEN	Reserved	AEN	PON

Fields	Bits	Description
Reserved	7:5	Reserved. Write as 0.
AIEN	4	RGBC interrupt enable. When asserted, permits RGBC interrupts to be generated.
WEN	3	Wait enable. This bit activates the wait feature. Writing a 1 activates the wait timer. Writing a 0 disables the wait timer.
Reserved	2	Reserved. Write as 0.
AEN	1	RGBC enable. This bit actives the two-channel ADC. Writing a 1 activates the RGBC. Writing a 0 disables the RGBC.
PON ^{(1), (2)}	0	Power ON. This bit activates the internal oscillator to permit the timers and ADC channels to operate. Writing a 1 activates the oscillator. Writing a 0 disables the oscillator.

Notes:

- 1. See Power Management section for more information.
- $2. \ \ A \ minimum \ interval \ of \ 2.4 \ ms \ must \ pass \ after \ PON \ is \ asserted \ before \ an \ RGBC \ can \ be \ initiated.$

Page 22ams DatasheetDocument Feedback[v1-03] 2018-Mar-14

RGBC Timing Register (0x01)

The RGBC timing register controls the internal integration time of the RGBC clear and IR channel ADCs in 2.4-ms increments. Max RGBC Count = $(256 - ATIME) \times 1024$ up to a maximum of 65535.

Figure 27: **RGBC Timing Register**

Fields	Bits	Description							
		VALUE	INTEG_CYCLES	TIME	MAX COUNT				
		0xFF	1	2.4 ms	1024				
ATIME	7:0	0xF6	10	24 ms	10240				
ATTIVIE	7.0	0xD5	42	101 ms	43008				
		0xC0	64	154 ms	65535				
		0x00	256	700 ms	65535				

Wait Time Register (0x03)

Wait time is set 2.4 ms increments unless the WLONG bit is asserted, in which case the wait times are 12× longer. WTIME is programmed as a 2's complement number.

Figure 28: **Wait Time Register**

Fields	Bits	Description					
		REGISTER VALUE	WAIT TIME	TIME (WLONG= 0)	TIME (WLONG= 1)		
WTIME	WTIME 7:0	0xFF	1	2.4 ms	0.029 sec		
VVIIIVIL	7.0	0xAB	85	204 ms	2.45 sec		
		0x00	256	614 ms	7.4 sec		

ams Datasheet Page 23 **Document Feedback**

RGBC Interrupt Threshold Registers (0x04 – 0x07)

The RGBC interrupt threshold registers provides the values to be used as the high and low trigger points for the comparison function for interrupt generation. If the value generated by the clear channel crosses below the lower threshold specified, or above the higher threshold, an interrupt is asserted on the interrupt pin.

Figure 29: RGBC Interrupt Threshold Registers

Register	Address	Bits	Description
AILTL	0x04	7:0	RGBC clear channel low threshold lower byte
AILTH	0x05	7:0	RGBC clear channel low threshold upper byte
AIHTL	0x06	7:0	RGBC clear channel high threshold lower byte
AIHTH	0x07	7:0	RGBC clear channel high threshold upper byte

Persistence Register (0x0C)

The persistence register controls the filtering interrupt capabilities of the device. Configurable filtering is provided to allow interrupts to be generated after each integration cycle or if the integration has produced a result that is outside of the values specified by the threshold register for some specified amount of time.

7 6 5 4 3 2 1 0

Reserved APERS

Field	Bits	Description
PPERS	7:4	Reserved

Page 24ams DatasheetDocument Feedback[v1-03] 2018-Mar-14

Field	Bits	Description						
		Interrupt persistence. Controls rate of interrupt to the host processor.						
		FIELD VALUE	MEANING	INTERRUPT PERSISTENCE FUNCTION				
		0000	Every	Every RGBC cycle generates an interrupt				
		0001	1	1 clear channel value outside of threshold range				
		0010	2	2 clear channel consecutive values out of range				
		0011	3	3 clear channel consecutive values out of range				
		0100	5	5 clear channel consecutive values out of range				
		0101	10	10 clear channel consecutive values out of range				
APFRS	3:0	0110	15	15 clear channel consecutive values out of range				
AFERS	3.0	0111	20	20 clear channel consecutive values out of range				
		1000	25	25 clear channel consecutive values out of range				
		1001	30	30 clear channel consecutive values out of range				
		1010	35	35 clear channel consecutive values out of range				
		1011	40	40 clear channel consecutive values out of range				
					1100	45	45 clear channel consecutive values out of range	
		1101	50	50 clear channel consecutive values out of range				
		1110	55	55 clear channel consecutive values out of range				
		1111	60	60 clear channel consecutive values out of range				

Configuration Register (0x0D)

The configuration register sets the wait long time.

Figure 31: Configuration Register

Fields	Bits	Description
Reserved	7:2	Reserved. Write as 0.
WLONG	1	Wait Long. When asserted, the wait cycles are increased by a factor 12× from that programmed in the WTIME register.
Reserved	0	Reserved. Write as 0.

ams Datasheet Page 25
[v1-03] 2018-Mar-14
Document Feedback