

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

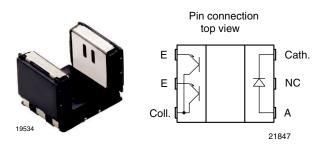
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AUTOMOTIVE GRADE


RoHS

GREEN

Vishay Semiconductors

Subminiature Dual Channel Transmissive Optical Sensor with Phototransistor Outputs

DESCRIPTION

The TCUT1350X01 is a compact transmissive sensor that includes an infrared emitter and two phototransistor detectors, located face-to-face in a surface mount package. TCUT1350X01 is especially designed to meet high operating temperature requirements and is released for operating temperature ranges from - 40 °C to + 125 °C.

FEATURES

• Package type: surface mount

· Detector type: phototransistor

• Dimensions (L x W x H in mm): 5.5 x 4 x 4

AEC-Q101 qualified

• Gap (in mm): 3

• Aperture (in mm): 0.3

• Channel distance (center to center): 0.8 mm

Typical output current under test: I_C = 1.6 mA

• Emitter wavelength: 950 nm

Released for high operating temperatures up to 125 °C

• Lead (Pb)-free soldering released

Moisture sensitivity level (MSL): 1

 Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

- · Automotive optical sensors
- · Accurate position sensor for encoder
- Sensor for motion, speed and direction

PRODUCT SUMMARY						
PART NUMBER	GAP WIDTH (mm)	APERTURE WIDTH (mm)	TYPICAL OUTPUT CURRENT UNDER TEST (1) (mA)	DAYLIGHT BLOCKING FILTER INTEGRATED		
TCUT1350X01	3	0.3	1.6	No		

Note

· Conditions like in table basic characteristics/coupler

ORDERING INFORMATION						
ORDERING CODE	PACKAGING	VOLUME (1)	REMARKS			
TCUT1350X01	Tape and reel	MOQ: 2000 pcs, 2000 pcs/reel	Drypack, MSL 1			

Note

· MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
COUPLER					
Total power dissipation	T _{amb} ≤ 125 °C	P _{tot}	37.5	mW	
Junction temperature		T _j	140	°C	
Ambient temperature range		T _{amb}	- 40 to + 125	°C	
Storage temperature range		T _{stg}	- 40 to + 125	°C	
Soldering temperature	In accordance with fig. 16	T_{sd}	260	°C	
INPUT (EMITTER)					
Reverse voltage		V_{R}	5	V	
Forward current	T _{amb} ≤ 125 °C	l _F	25	mA	
Forward surge current	t _p ≤ 10 μs	I _{FSM}	200	mA	
Power dissipation	T _{amb} ≤ 125 °C	P_V	37.5	mW	
OUTPUT (DETECTOR)					
Collector emitter voltage		V_{CEO}	20	V	
Emitter collector voltage		V_{ECO}	7	V	
Collector current		I _C	20	mA	
Collector dark current	$T_{amb} = 85 ^{\circ}C, V_{CE} = 5 V$	I _{CEO}	3.3	μΑ	

ABSOLUTE MAXIMUM RATINGS

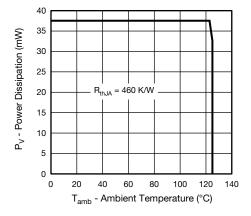


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

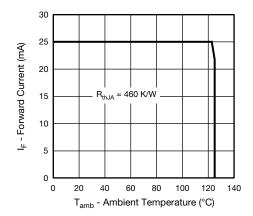


Fig. 2 - Forward Current Limit vs. Ambient Temperature

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION SYMBOL MIN. TYP.		MAX.	UNIT		
COUPLER						
Collector current per channel	$V_{CE} = 5 \text{ V}, I_F = 15 \text{ mA}$	Ic	0.7	1.6		mA
Collector emitter saturation voltage	I _F = 15 mA, I _C = 0.2 mA	0.2 mA V _{CEsat}		0.4	V	
INPUT (EMITTER)						
Forward voltage	I _F = 15 mA	V _F	1	1.2	1.4	V
Reverse current	V _R = 5 V	I _R				μΑ
Junction capacitance	$V_R = 0 V, f = 1 MHz$	C _i 25		25		pF
OUTPUT (DETECTOR)						
Collector emitter voltage I _C	I _C = 1 mA	V _{CEO}	V _{CEO} 20			V
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V
Collector dark current	$V_{CE} = 25 \text{ V}, I_F = 0 \text{ A}, E = 0 \text{ Ix}$	I _{CEO} 1		100	nA	
SWITCHING CHARACTERISTICS						
Rise time	I_C = 0.7 mA, V_{CE} = 5 V, R_L = 100 Ω (see fig. 3)	t _r 9		9	150	μs
Fall time	I_C = 0.7 mA, V_{CE} = 5 V, R_L = 100 Ω (see fig. 3)	t _f 16 15		150	μs	

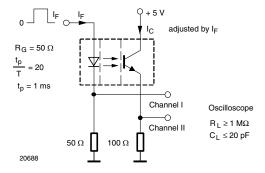


Fig. 3 - Test Circuit for t_{r} and t_{f}

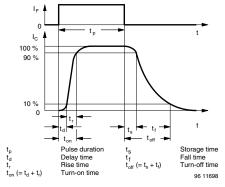


Fig. 4 - Switching Times

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

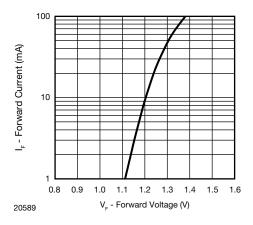


Fig. 5 - Forward Current vs. Forward Voltage

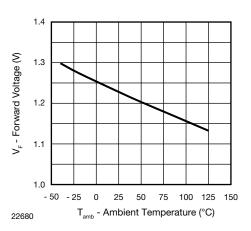
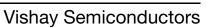



Fig. 6 - Forward Voltage vs. Ambient Temperature

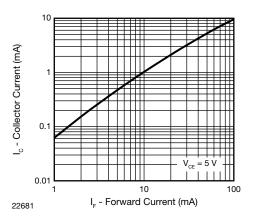


Fig. 7 - Collector Current vs. Forward Current

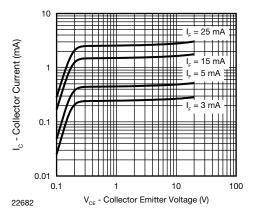


Fig. 8 - Collector Current vs. Collector Emitter Voltage

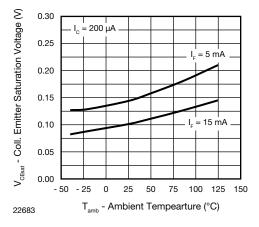


Fig. 9 - Collector Emitter Saturation Voltage vs.
Ambient Temperature

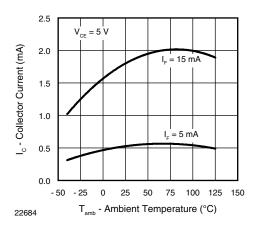


Fig. 10 - Collector Current vs. Ambient Temperature

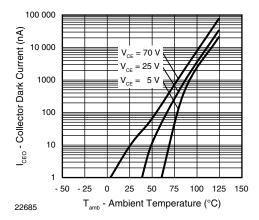


Fig. 11 - Collector Dark Current vs. Ambient Temperature

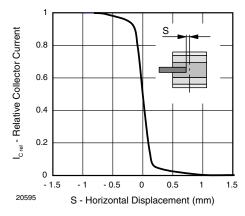


Fig. 12 - Relative Collector Current vs. Horizontal Displacement

0.5 Optical axis 0.5 -1 -0.5 0 0.5 1 1.5 20610 S - Vertical Displacement (mm)

Fig. 13 - Relative Collector Current vs. Vertical Displacement

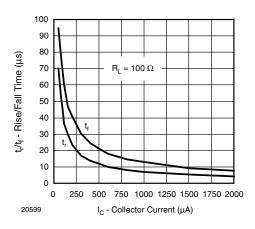


Fig. 14 - Rise/Fall Time vs. Collector Current

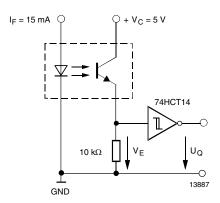
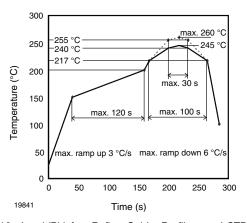
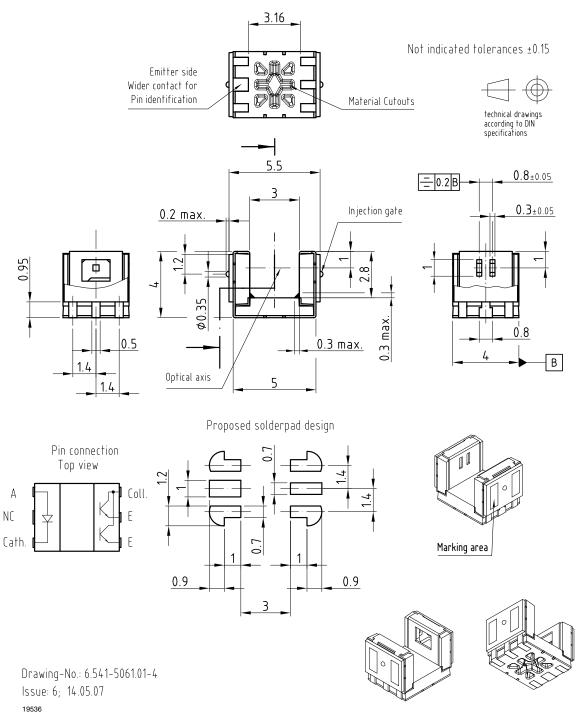


Fig. 15 - Application example

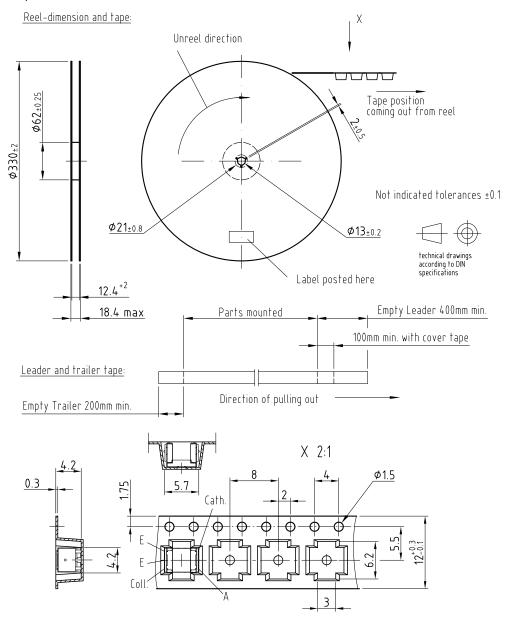
REFLOW SOLDER PROFILE




Fig. 16 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

FLOOR LIFE

Level 1, acc. JEDEC, J-STD-020. No time limit.



PACKAGE DIMENSIONS in millimeters

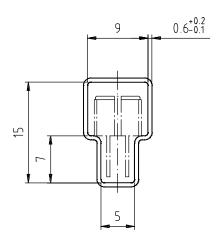
PACKAGE DIMENSIONS in millimeters

Volume/reel = 2000 pcs

Drawing-No.: 9.800-5092.01-4

Issue: 1; 14.05.07

20611



Packaging and Ordering Information

PART NUMBER	MOQ (1)	PCS PER TUBE	TUBE SPEC. (FIGURE)	CONSTITUENTS (FORMS)
CNY70	4000	80	1	28
TCPT1300X01	2000	Reel	(2)	29
TCRT1000	1000	Bulk	-	26
TCRT1010	1000	Bulk	-	26
TCRT5000	4500	50	2	27
TCRT5000L	2400	48	3	27
TCST1030	5200	65	5	24
TCST1030L	2600	65	6	24
TCST1103	1020	85	4	24
TCST1202	1020	85	4	24
TCST1230	4800	60	7	24
TCST1300	1020	85	4	24
TCST2103	1020	85	4	24
TCST2202	1020	85	4	24
TCST2300	1020	85	4	24
TCST5250	4860	30	8	24
TCUT1300X01	2000	Reel	(2)	29
TCZT8020-PAER	2500	Bulk	-	22

Notes

TUBE SPECIFICATION FIGURES

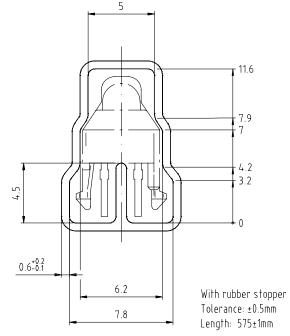
With rubber stopper Tolerance: ±0.5mm Length: 575±1mm

Drawing-No.: 9.700-5097.01-4

Issue: 1; 25.02.00

15198

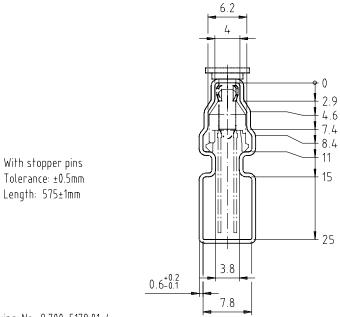
Fig. 1


⁽¹⁾ MOQ: minimum order quantity

⁽²⁾ Please refer to datasheets

Packaging and Ordering Information

Vishay Semiconductors Packaging and Ordering Information



Drawing-No.: 9.700-5139.01-4 Issue: 1; 10.05.00

Drawing refers to following types: TCRT 5000

15210

Fig. 2

Drawing-No.: 9.700-5178.01-4

Issue: 1; 25.02.00

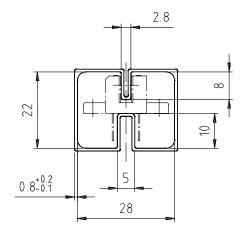

15201

Fig. 3

Packaging and Ordering Information Vishay Semiconductors

With rubber stopper Tolerance: ±0.5mm Length: 575±1mm

Drawing-No.: 9.700-5100.01-4

Issue: 1; 25.02.00

15199

15202

Fig. 4

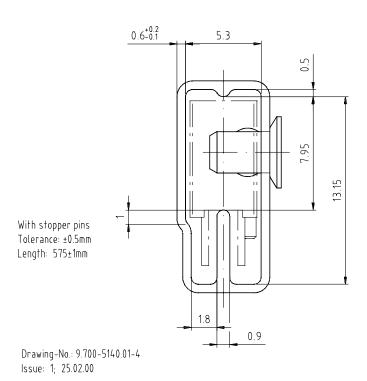
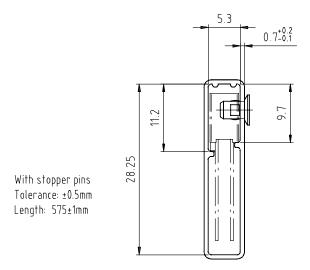
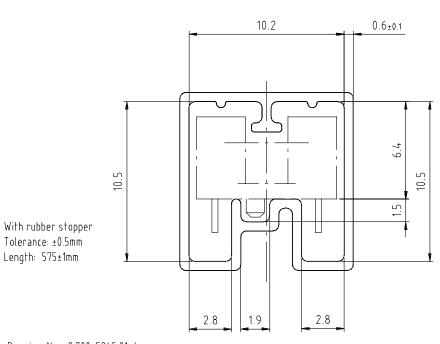



Fig. 5

Packaging and Ordering Information

Vishay Semiconductors Packaging and Ordering Information



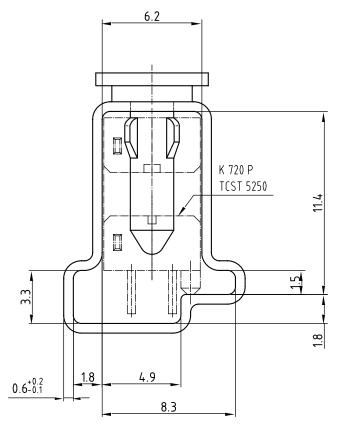
Drawing-No.: 9.700-5205.01-4

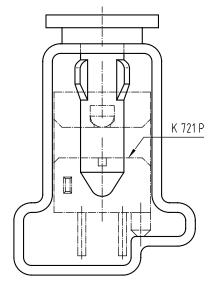
Issue: 1; 25.02.00

15196

Fig. 6

Drawing-No.: 9.700-5245.01-4


Issue: 1; 25.02.00 15195


Fig. 7

Packaging and Ordering Information Vishay Semiconductors

Drawing-No.: 9.700-5222.01-4

Issue: 2; 19.11.04

20257

With stopper pins Tolerance: ±0.5mm Length: 450±1mm All dimensions in mm

Fig. 8

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.