

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

TDA1519 2 x 6 W stereo car radio power amplifier

Product specification
File under Integrated Circuits, IC01

May 1992

2 x 6 W stereo car radio power amplifier

TDA1519

GENERAL DESCRIPTION

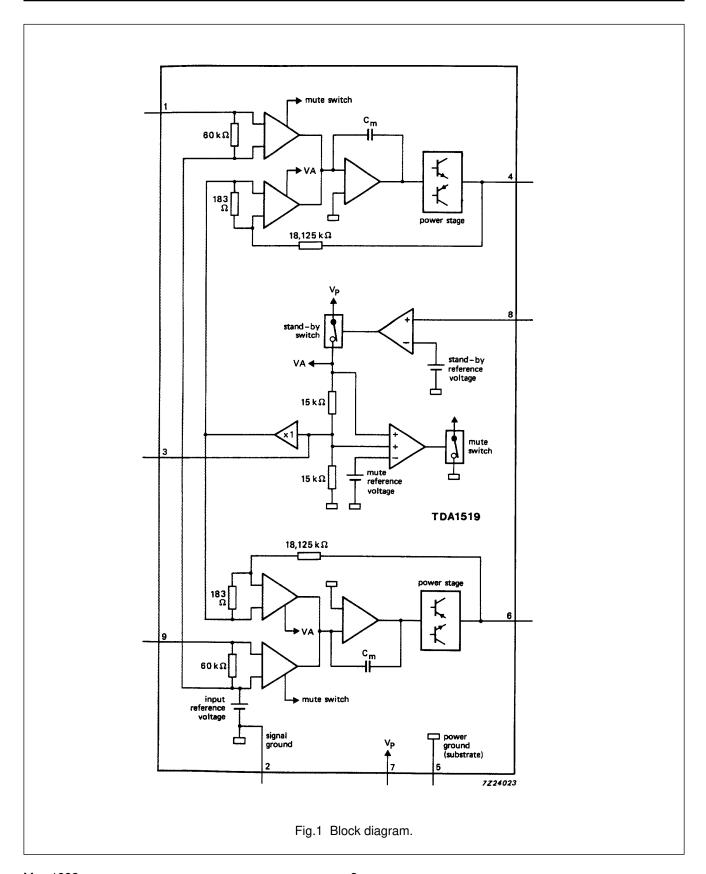
The TDA1519 is an integrated class-B dual output amplifier in a 9-lead single in-line (SIL) plastic medium power package. The device is primarily developed for car radio applications.

Features

- Requires very few external components
- · High output power
- · Fixed gain
- · Good ripple rejection
- Mute/stand-by switch
- · Load dump protection
- ullet AC and DC short-circuit-safe to ground and V_P

- Thermally protected
- Reverse polarity safe
- Capability to handle high energy on outputs (V_P = 0 V)
- No switch-on/switch-off plop
- Protected against electrostatic discharge
- Compatible with TDA1517 (except gain).

QUICK REFERENCE DATA


PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage range						
operating		V _P	6,0	14,4	18,0	V
non-operating		V _P	_	_	30	V
load dump protected		V _P	_	_	45	V
Repetitive peak output current		I _{ORM}	_	_	2,5	Α
Total quiescent current		I _{tot}	_	40	80	mA
Stand-by current		I _{sb}	_	0,1	100	μΑ
Switch-on current		I _{sw}	_	_	40	μΑ
Input impedance		$ Z_{I} $	50	_	_	kΩ
Output power	THD = 0,5%; 4 Ω	Po	_	5	_	W
	THD = 10%; 4 Ω	Po	_	6	_	W
Channel separation		α	40	_	_	dB
Noise output voltage		V _{no(rms)}	_	150	_	μV
Supply voltage ripple rejection	f = 100 Hz	SVRR	40	_	_	dB
	f = 1 kHz to 10 kHz	SVRR	48	_	_	dB
Crystal temperature		T _c	_	_	150	°C

PACKAGE OUTLINE

9-lead SIL-bent-to-DIL; plastic (SOT110B); SOT110-1; 1996 July 19.

2 x 6 W stereo car radio power amplifier

TDA1519

2 x 6 W stereo car radio power amplifier

TDA1519

PINNING

INV1 non-inverting input 1
 GND1 ground (signal)
 SVRR supply voltage ripple rejection
 OUT1 output 1

5 GND2 ground (substrate)

6 OUT2 output 2

7 V_P supply voltage

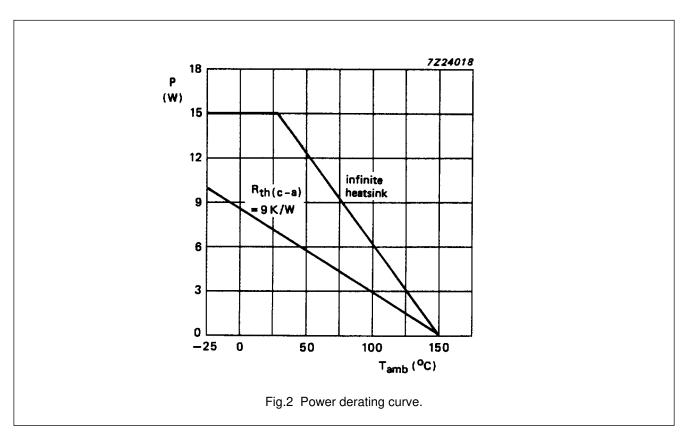
8 M/SS mute/stand-by switch9 -INV2 non-inverting input 2

FUNCTIONAL DESCRIPTION

The TDA1519 contains two identical amplifiers with differential input stages. The gain of each amplifier is fixed at 40 dB. A special feature of this device is the mute/stand-by switch which has the following features:

- low stand-by current (< 100 μ A)
- low mute/stand-by switching current (low cost supply switch)
- · mute condition.

RATINGS


Limiting values in accordance with the Absolute Maximum System (IEC 134)

PARAMETER	CONDITIONS	SYMBOL	MIN.	MAX.	UNIT
Supply voltage					
operating		V_{P}	_	18	V
non-operating		V _P	_	30	V
load dump protected	during 50 ms;				
	t _r ≥ 2,5 ms	V_{P}	_	45	V
AC and DC short-circuit-safe voltage		V _{PSC}	_	18	V
Reverse polarity		V_{PR}	_	6	V
Energy handling capability at outputs	$V_P = 0 V$		_	200	mJ
Non-repetitive peak output current		I _{OSM}	_	4	Α
Repetitive peak output current		I _{ORM}	_	2,5	Α
Total power dissipation	see Fig.2	P _{tot}	_	15	W
Crystal temperature		T _c	_	150	°C
Storage temperature range		T _{stg}	-55	+ 150	°C

May 1992

2 x 6 W stereo car radio power amplifier

TDA1519

DC CHARACTERISTICS (note 1)

 V_P = 14,4 V; T_{amb} = 25 °C; unless otherwise specified

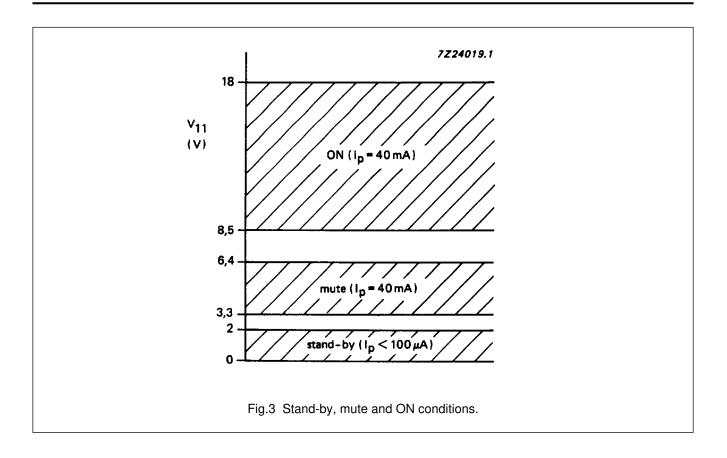
PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply						
Supply voltage range	note 2	V _P	6,0	14,4	18,0	V
Quiescent current		I _P	_	40	80	mA
DC output voltage	note 3	Vo	_	6,95	_	V
Mute/stand-by switch						
Switch-on voltage level	see Fig.3	V _{ON}	8,5	_	_	V
Mute condition		V _{mute}	3,3	_	6,4	V
Output signal in mute position	$V_{I} = 1 \ V \ (max.);$					
	f = 20 Hz to					
	15 kHz	Vo	_	_	20	mV
Stand-by condition		V _{sb}	0	_	2	V
DC current in stand-by condition		I _{sb}	_	_	100	μΑ
Switch-on current		I _{sw}	_	12	40	μΑ

2 x 6 W stereo car radio power amplifier

TDA1519

AC CHARACTERISTICS (note 1)

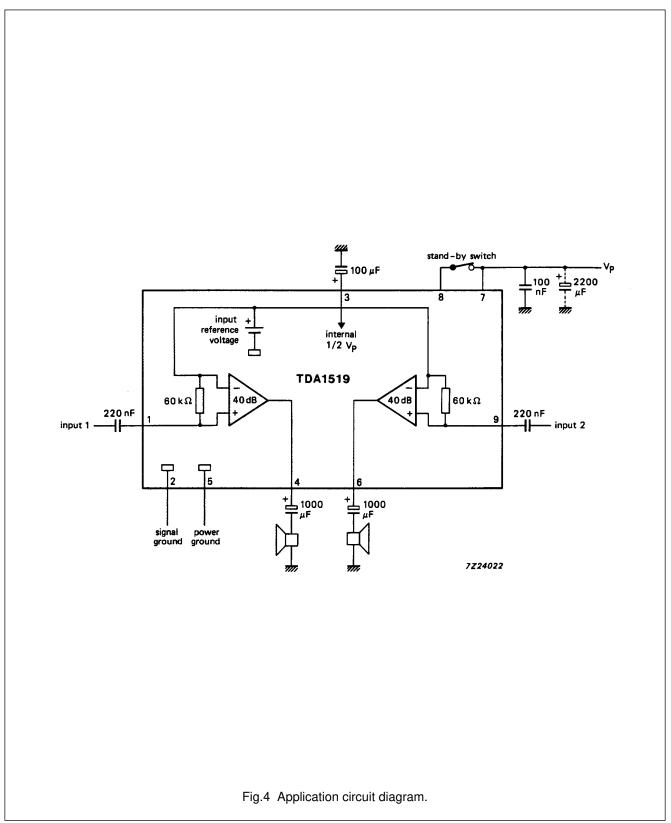
 V_P = 14,4 V; R_L = 4 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified


PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Output power	note 4;					
	THD = 0,5%	Po	4	5	_	w
	THD = 10%	Po	5,5	6,0	_	w
Total harmonic distortion	P _o = 1 W	THD	_	0,1	_	%
Low frequency roll-off	note 5;					
	-3 dB	fL	_	45	_	Hz
High frequency roll-off	-1 dB	f _H	20	_	_	kHz
Closed loop voltage gain		G _v	39	40	41	dB
Supply voltage ripple rejection	note 6					
ON	f = 100 Hz	SVRR	40	_	_	dB
ON	f = 10 Hz to 10 kHz	SVRR	48	_	_	dB
mute		SVRR	48	_	_	dB
stand-by		SVRR	80	_	_	dB
Input impedance		$ Z_i $	50	60	75	kΩ
Noise output voltage	note 7;					
ON	$R_S = 0 \Omega$	V _{no(rms)}	_	150	_	μV
ON	$R_S = 10 \text{ k}\Omega$	V _{no(rms)}	_	250	500	μV
mute	note 8	V _{no(rms)}	_	120	_	μV
Channel separation	$R_S = 10 \text{ k}\Omega$	α	40	_	_	dB
Channel balance		∆G _v	_	0,1	1	dB

Notes to the characteristics

- 1. All characteristics are measured using the circuit shown in Fig.4.
- 2. The circuit is DC adjusted at $V_P = 6 \text{ V}$ to 18 V and AC operating at $V_P = 8.5 \text{ V}$ to 18 V.
- 3. At 18 V < V_P < 30 V the DC output voltage $\leq V_P/2$.
- 4. Output power is measured directly at the output pins of the IC.
- 5. Frequency response externally fixed.
- 6. Ripple rejection measured at the output with a source impedance of 0 Ω (maximum ripple amplitude of 2 V) and a frequency between 100 Hz and 10 kHz.
- 7. Noise voltage measured in a bandwidth of 20 Hz to 20 kHz.
- 8. Noise output voltage independent of R_S ($V_I = 0 V$).

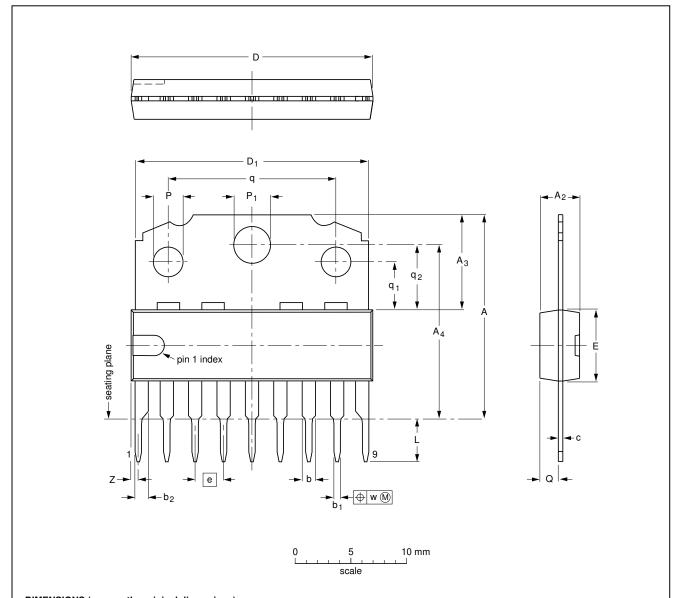
2 x 6 W stereo car radio power amplifier


TDA1519

2 x 6 W stereo car radio power amplifier

TDA1519

APPLICATION INFORMATION


2 x 6 W stereo car radio power amplifier

TDA1519

PACKAGE OUTLINE

SIL9MPF: plastic single in-line medium power package with fin; 9 leads

SOT110-1

DIMENSIONS (mm are the original dimensions)

UN	IIT	A	A ₂ max.	A ₃	A ₄	b	b ₁	b ₂	С	D ⁽¹⁾	D ₁	E ⁽¹⁾	е	L	Р	P ₁	Q	q	q ₁	q ₂	w	Z ⁽¹⁾ max.
m	m	18.5 17.8	3.7	8.7 8.0	15.8 15.4	1.40 1.14	0.67 0.50	1.40 1.14	0.48 0.38	21.8 21.4	21.4 20.7	6.48 6.20	2.54	3.9 3.4	2.75 2.50	3.4 3.2	1.75 1.55	15.1 14.9	4.4 4.2	5.9 5.7	0.25	1.0

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DAT	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1330E DATE
SOT110-1					92-11-17 95-02-25

2 x 6 W stereo car radio power amplifier

TDA1519

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\ max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 $^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.