mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

6 + 6W STEREO AMPLIFIER

- HIGH OUTPUT POWER
- HIGH CURRENT CAPABILITY
- AC SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

The TDA2007A is a class AB dual Audio power amplifier assembled in single in line 9 pins package, specially designed for stereo application in music centers TV receivers and portable radios.

STEREO TEST CIRCUIT

PIN CONNECTION (top view)

SCHEMATIC DIAGRAM

THERMAL DATA

Symbol	Parameter	Value	Unit	
R _{th i-case}	Thermal Resistance Junction-case	Max.	8	°C/W
R _{th j-amb}	Thermal Resistance Junctio-ambient	Max.	70	°C/W

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	28	V
lo	Output Peak Current (repetitive f ≥ 20Hz)	3	А
Ιo	Output Peak Current (non repetitive t = 100µs)	3.5	Α
P _{tot}	Power Dissipation at $T_{case} = 70^{\circ}C$	10	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

ELECTRICAL CHARACTERISTICS (refer to the stereo application circuit, $T_{amb} = 25^{\circ}C$, $V_S = 18V$, $G_V = 36dB$, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		8		26	V
Vo	Quiescent Output Voltage			8.5		V
l _d	Total Quiescent Drain Curent			50	90	mA
Po	Output Power (each channel)	$ f = 100Hz to 6KHz d = 0.5\% V_S = 18V R_L = 4\Omega V_S = 22V R_L = 8W $	5.5 5.5	6 6		W W
d	Distortion (each channel)	$ f = 1 KHz, V_S = 18V, R_L = 4\Omega $ $ P_O = 100 mW to 3W $ $ f = 1 KHz, V_S = 22V, R_L = 8\Omega $ $ P_O = 100 mW to 3W $		0.1 0.05		% %
СТ	Cross Talk (⁰⁰⁰)	$R_L = \infty$, $R_g = 10K\Omega$ f = 1KHz f = 10KHz	50 40	60 50		dB dB
Vi	Input Saturation Voltage (rms)		300			mV
Ri	Input Resistance	f = 1KHz	70	200		KΩ
fL	Low Frequency Roll Off (-3dB)	$R_L = 4\Omega$, $C10 = C11 = 2200\mu F$		40		Hz
f _H	Low Frequency Roll Off (-3dB)			80		KHz
Gv	Voltage Gain (closed loop)	f = 1KHz	35.5	36	36.5	dB
ΔG_V	Closed Loop Gain Matching			0.5		dB
e _N	Total Input Noise Voltage	$R_g = 10k\Omega$ (°)		1.5		μV
		$R_g = 10k\Omega$ (°°)		2.5	8	μV
SVR	Supply Voltage Rejection (each channel)	$R_g = 10K\Omega$ f _{ripple} = 100Hz, V _{ripple} = 0.5V		55		dB
Tj	Thermal Shut-down Junction Temperature			145		°C

(°) Curve A. (°°) 22Hz to 22KHz.

Figure 1 : Stereo Test Circuit ($G_V = 36 \text{ dB}$).

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig.1. Different values can be used ; the following table can help the designer.

Component	Recommended value	Purpose	Larger Than	Smaller Than	
R1, R3	1.3KΩ	Close Loop Gain	Increase of Gain	Decrease of Gain	
R2 and R4	18Ω	Setting (*)	Decrease of Gain	Increase of gain	
R5 and R6	1Ω	Frequency stability	Danger of Oscillation at High Frequency with Inductive Load		
C1 and C2	2.2µF	Input DC Decoupling	High Turn-on Delay	High Turn-on Pop Higher Low Frequency Cutoff. Increase of Noise	
C3	22µF	Ripple Rejection	Better SVR Increase of the Switch-on Time	Degradation of SVR	
C6 and C7	220µF	Feedback Input DC Decoupling			
C8 and C9	0.1µF	Frequency Stability		Danger of Oscillation	
C10 and C11	1000μF to 2200μF	Output DC Decoupling		Higher Low-frequency Cut-off	

(*) The closed loop gain must be higher than 26 dB.

APPLICATION INFORMATION

Figure 3 : 12 W Bridge Amplifier (d = 0.5%, $G_V = 40$ dB).

ым	mm			inch		
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			7.1			0.280
a1	2.7		3	0.106		0.118
В			23			0.90
B3			24.8			0.976
b1		0.5			0.020	
b3	0.85		1.6	0.033		0.063
С		3.3			0.130	
c1		0.43			0.017	
c2		1.32			0.052	
D			21.2			0.835
d1		14.5			0.571	
е		2.54			0.100	
e3		20.32			0.800	
L	3.1			0.122		
L1		3			0.118	
L2		17.6			0.693	
L3			0.25			0.010
L4	17.4		17.85	0.685		0,702
М		3.2			0.126	
Ν		1			0.039	
Р			0.15			0.006

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

