

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

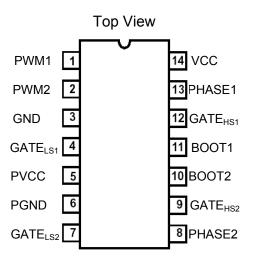
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

High speed Driver with bootstrapping for dual Power MOSFETs


P-DSO-14-3

Features

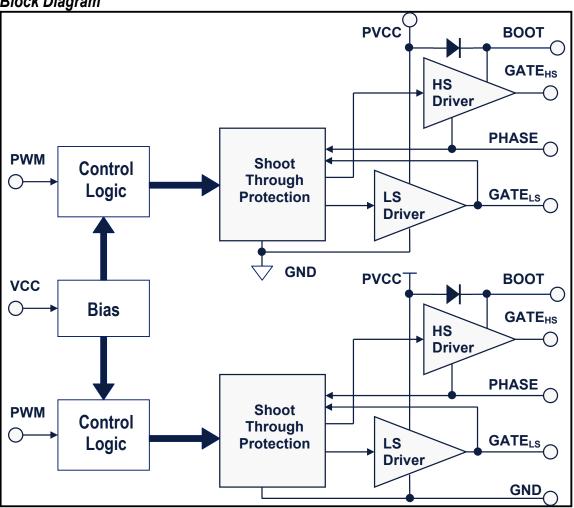
- Fast rise and fall times for frequencies up to 2 MHz
- Capable of sinking more than 4 A peak current for lowest switching losses
- Charges the High Side and Low Side MOSFET's gate to 5..12 V according to PVCC setting.
- Adjustable High Side and Low Side MOSFET gate drive voltage via PVCC pin for optimizing ON losses and gate drive losses
- Integrates the bootstrap diode for reducing the part count
- Prevents from cross-conducting by adaptive gate drive control
- High voltage rating on Phase node
- Supports shut-down mode for very low quiescent current through three-state input
- Compatible to standard PWM controller ICs (Intersil, Analog Devices)
- Floating High Side MOSFET drive
- Ideal for multi-phase Desktop CPU supplies on motherboards and VRM's

Туре	Package	Marking	Ordering Code
TDA21102	P-DSO-14-3	21102	Q67042-S4244

Pinout & Description

Number	Name	Description			
1	PWM1	Input for the PWM1 controller signal			
2	PWM2	Input for the PWM2 controller signal			
3	GND	Ground			
4	GATE _{LS1}	Gate drive output for the N-Channel Low Side MOSFET 1.			
5	PVCC	Input to adjust the High Side gate drive			
6	PGND	Power ground return for the Low Side Drivers			
7	GATE _{LS2}	Gate drive output for the N-Channel Low Side MOSFET 2.			
8	PHASE2	To be connected to the junction of the High Side and the Low Side MOSFET 2			
9	GATE _{HS2}	Gate drive output for the N-Channel High Side MOSFET 2.			
10	BOOT2	Floating bootstrap pin. To be connected to the external bootstrap capacitor to generate the gate drive voltage for the High Side N-Channel MOSFET 2.			
11	BOOT1	Floating bootstrap pin. To be connected to the external bootstrap capacitor to generate the gate drive voltage for the High Side N-Channel MOSFET 1.			
12	GATE _{HS1}	Gate drive output for the N-Channel High Side MOSFET 1.			
13	PHASE1	To be connected to the junction of the High Side and the Low Side MOSFET 1			
14	VCC	Supply Voltage			

CoreControl™ **Data Sheet TDA21102**


General Description

The dual high speed driver is designed to drive a wide range of N-Channel low side and N-Channel high side MOSFETs with varying gate charges. It has a small propagation delay from input to output, short rise and fall times and the same pin configuration as the HIP6602B. In addition it provides several protection features as well as a shut down mode for efficiency reasons. The high breakdown voltage makes it suitable for mobile applications.

Target application

The dual high speed driver is designed to work well in half-bridge type circuits where dual N-Channel MOSFETs are utilized. A circuit designer can fully take advantage of the driver's capabilities in highefficiency, high-density synchronous DC/DC converters that operate at high switching frequencies, e.g. in multi-phase converters for CPU supplies on motherboards and VRM's but also in motor drive and class-D amplifier type applications.

Block Diagram

Data Sheet CoreControl™ TDA21102

Absolute Maximum RatingsAt Tj = 25 °C, unless otherwise specified

Parameter	Symbol	Va	lue	Unit
		Min.	Max.	
Voltage supplied to 'VCC' pin	Vvcc	-0.3	25	
Voltage supplied to 'PVCC' pin	V _{PVCC}	-0.3	25	V
Voltage supplied to 'PWM' pin	V_{PWM}	-0.3	5.5	
Voltage supplied to 'BOOT' pin referenced to 'PHASE'	V _{BOOT} – V _{PHASE}	-0.3	25	
Voltage rating at 'PHASE' pin, DC	V _{PHASE}	-1	25	
Voltage rating at 'PHASE' pin, t _{pulse_max} =500ns Max Duty Cycle = 2%		-20	30	
Voltage supplied to GATE _{HS} pin referenced to 'PHASE' T_{pulse_max} < 100ns, E < 2uJ	V _{GATEHS}	-3.5	V _{BOOT} +0.3	
Voltage supplied to GATE _{LS} pin referenced to 'GND' T _{pulse_max} < 100ns, E < 2uJ	V _{GATELS}	-5	V _{VCC} +0.3	
Junction temperature	TJ	-25	150	°C
Storage temperature	Ts	-55	150	
ESD Rating; Human Body Model			4	kV
IEC climatic category; DIN EN 60068-1		55/1	50/56	-

Thermal Characteristic

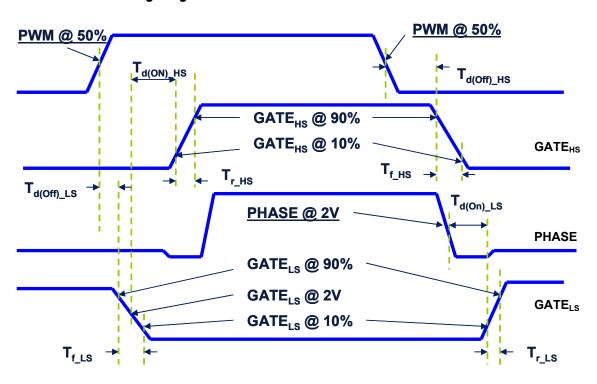
Parameter	Symbol	Values			Unit
		Min.	Тур.	Max.	
Thermal resistance, junction-solder joint (pin 4)	Rth-JS		40.5		
Thermal resistance, junction-case	Rth-JC		44.7		K/W
Thermal resistance, junction-ambient	Rth-JA		116.2		

Electrical Characteristic

At Tj = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions		Values	}	Unit
			Min.	Тур.	Max.	
Supply Characteristic						
Bias supply current	I _{VCC}	f = 1 MHz,				
		NO LOAD		1.3	1.8	
		$V_{PVCC} = V_{VCC} = 12 V$				
Quiescent current	Ivccq	$1.8 \text{ V} \leq \text{V}_{PWM} \leq 3.0 \text{ V}$		3.8	4.9	mA
Power supply current	I _{PVCC}	f = 1 MHz,				
		NO LOAD		25	33	
		$V_{PVCC} = V_{VCC} = 12 V$				
Under-voltage lockout		V _{VCC} rising threshold	9.7	10.1	10.5	V
Under-voltage lockout		V _{VCC} falling threshold	7.3	7.6	8.0	V
Input Characteristic						
Current in 'PWM' pin	I_{PWM_L}	$V_{PWM} = 0.4 V$	-80	115	-150	μΑ
Current in 'PWM' pin	I_{PWM_H}	$V_{PWM} = 4.5 V$	120	180	250	
Shut down window	V _{IN_SHUT}	t_sнит > 350 ns	1.7		3.1	V
Shut down hold-off	t_shut	1.7 $V \le V_{PWM} \le 3.1 V$	100	200	320	ns
time						
PWM pin open	V_{PWM_O}		1.8	2.0	2.2	
PWM Low level	V_{PWM_L}				1.4	
threshold (falling)						V
PWM High level V _{PWM_H}			3.7			
threshold (rising)						
Pulse Width High Side	$t_{\mathtt{p}}$	= Pulse with on PWM pin	40			ns

At Tj = 25 °C, unless otherwise specified


At 1] - 23 6, unless otherwise specified								
Dynamic Characterist	Dynamic Characteristic							
Turn-on propagation	t _{d(ON)_HS}			18	35			
Delay High Side*								
Turn-off propagation	t _{d(OFF)_HS}			18	25			
delay High Side								
Rise time High Side	t _{r_HS}			14	28			
Fall time High Side	t _{f_HS}	$P_{PVCC} = V_{VCC} = 12 V$		14	22	ns		
Turn-on propagation	t _{d(ON)_LS}	$C_{ISS} = 3000 \text{ pF}$		17	23			
Delay Low Side								
Turn-off propagation	t _{d(OFF)_LS}			14	20			
delay Low Side								
Rise time Low Side	t _{r_LS}			22	29			
Fall time Low Side	t _{f_LS}			14	22			

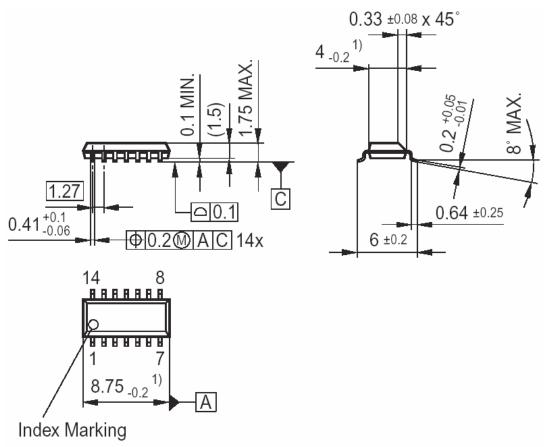
At Tj = 125 °C, unless otherwise specified

7 t 1 120 c, anico oponica								
Dynamic Characterist	Dynamic Characteristic							
Turn-on propagation	t _{d(ON)_HS}		22					
Delay High Side*								
Turn-off propagation	t _{d(OFF)_HS}		22					
delay High Side								
Rise time High Side	t _{r_HS}		16					
Fall time High Side	t _{f_HS}	$P_{PVCC} = V_{VCC} = 12 V$	16	ns				
Turn-on propagation	t _{d(ON)_LS}	$C_{ISS} = 3000 pF$	20					
Delay Low Side								
Turn-off propagation	t _{d(OFF)_LS}		18					
delay Low Side								
Rise time Low Side	t_{r_LS}		23					
Fall time Low Side	t _{f_LS}		16					

Measurement Timing diagram

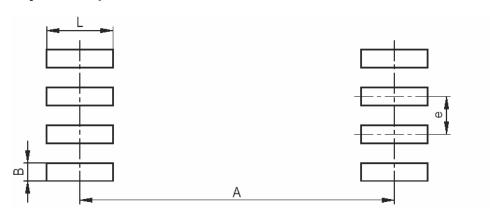
CoreControl™ **Data Sheet** TDA21102

Operating ConditionsAt Tj = 25 °C, unless otherwise specified


Parameter	Symbol	Conditions	Values		Unit	
			Min.	Тур.	Max.	
Voltage supplied to 'VCC' pin	Vvcc		10.8		13.2	V
Voltage supplied to 'PVCC' pin	V _{PVCC}		5		13.2	V
Input signal transition frequency	f		0.1		2	MHz
Power dissipation	P _{TOT}	$T_A = 25 ^{\circ}\text{C}, T_J = 125 ^{\circ}\text{C}$		0.9		W
Junction temperature	T_J		-25		150	°C

At Tj = 25 °C, unless otherwise specified Parameter		Conditions		Values	}	Unit
			Min.	Тур.	Max.	
Output Character	istic High Side	(HS) and Low Side (LS), ens	sured b	y desi	gn	
Output	HS; Source	$P_{PVCC} = V_{VCC} = 12 \text{ V I}_{HS_SRC}$		1 (1)		Ω
Resistance		= 2 A				
	HS; Sink	V_{VCC} = 12 V , P_{PVCC} = 5V		1	1.3	Ω
	HS; Sink	$P_{PVCC} = V_{VCC} = 12 V$		0.9	1.2	Ω
	LS; Source	$P_{PVCC} = V_{VCC} = 12 \text{ V I}_{HS_SRC}$		1.4(2)		Ω
		= 2 A				
	LS; Sink	V_{VCC} = 12 V , P_{PVCC} = 5V		1	1.3	Ω
	LS; Sink	$P_{PVCC} = V_{VCC} = 12 V$		1	1.25	Ω
	HS; Source	$P_{PVCC} = V_{VCC} = 12 V$	4			
Peak output-	HS; Sink	t_{P_HS} / Pulse < 20 ns	4			Α
current	LS; Source	t_P_LS / Pulse < 40 ns	4			
	LS; Sink	$D_{HS} < 2\%$, $D_{LS} < 4\%$	4			

 $^{^{1}}$ Incremental resistance V $_{\rm BOOT}$ V $_{\rm HS}$ =4.3V @ I $_{\rm SOURCE}$ =2A 2 Incremental resistance V $_{\rm VCC}$ –V $_{\rm LS}$ =4.4V @ I $_{\rm SOURCE}$ =2A



Package Drawing P-DSO-14-3

¹⁾ Does not include plastic or metal protrusion of 0.15 max. per side

Layout Footprints

е	A L		В	
1,27 mm	5,69 mm	1,31 mm	0,65 mm	

Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.