imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TDA2822D

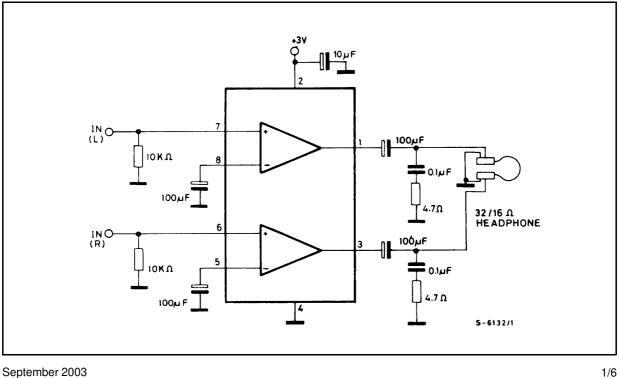
DUAL LOW-VOLTAGE POWER AMPLIFIER

SUPPLY VOLTAGE DOWN TO 1.8V

- LOWCROSSOVER DISTORTION
- LOW QUIESCENT CURRENT
- BRIDGE OR STEREO CONFIGURATION

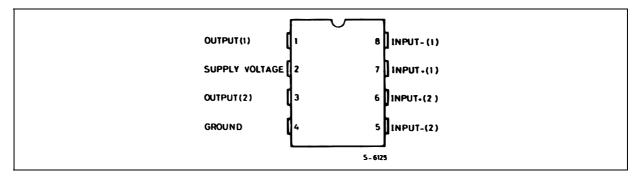
DESCRIPTION

The TDA2822D is a monolithic integrated circuit in 8 lead (SO-8) package. It is intended for use as dual audio power amplifier in portable cassette players, radios and CD players


SO8

ORDERING NUMBER: TDA2822D

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
Vs	Supply Voltage	15	V
lo	Peak Output	1	А
P _{tot}	Total Power Dissipation T _{amb} = 50°C	0.5	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

APPLICATION CIRCUIT

TDA2822D

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Description	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max	200	°C/W

Figure 1: Stereo Application and Test Circuit

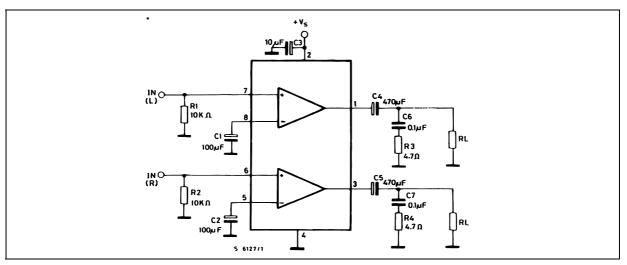
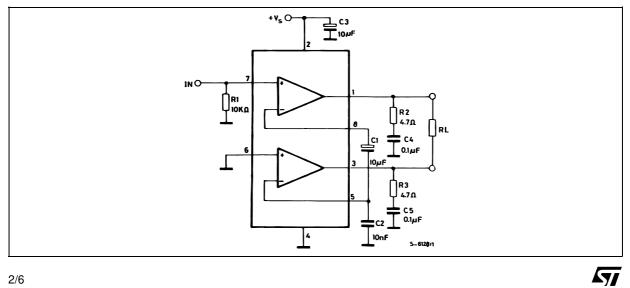
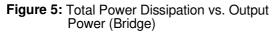



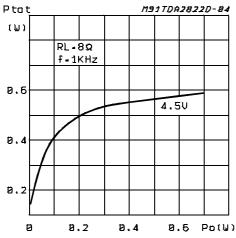
Figure 2: Bridge Application and Test Circuit

2/6

ELECTRICAL CHARACTERISTICS ($V_S = 6V$; $T_{amb} = 25^{\circ}C$, unless otherwise specified.

STEREO (Test circuit of fig. 1).


Symbol	Parameter	Те	Test Condition		Тур.	Max.	Unit
Vs	Supply Voltage			1.8		15	V
l _d	Total Quiescent Drain Current					15	mA
Vo	Quiescent Output Voltage				2.7		V
		$V_{\rm S} = 3V$			1.2		V
I _b	Input Bias Current				100		nA
Po	Output Power (each channel) (f = 1KHz, d = 10%)	R _L = 32Ω			300 120 60 20 5		mW
		$R_L = 16\Omega$	V _S = 6V	170	220		mW
		$R_L = 8\Omega$	$V_{\rm S} = 6V$	300	380		mW
		$R_L = 4\Omega$	V _S = 4.5V V _S = 3V		320 110		mW mW
d	Distortion	$R_L = 32\Omega$	$P_{O} = 40 \text{mW}$		0.2		%
		$R_L = 16\Omega$	$P_0 = 75 mW$		0.2		%
		$R_L = 8\Omega$	P _O = 150mW		0.2		%
Gv	Closed Loop Voltage Gain	f = 1KHz		36	39	41	dB
ΔG_V	Channel Balance					±1	dB
Ri	Input Resistance	f = 1KHz		100			KΩ
e _N	Total Input Noise	$R_s = 10k\Omega$	B = Curve A		2		μV
		$R_s = 10k\Omega$	B = 22Hz to 22KHz		2.5		μV
SVR	Supply Voltage Rejection	f = 100Hz	$C1 = C2 = 100 \mu F$	24	30		dB
Cs	Channel Separation	f = 1KHz			50		dB


BRIDGE (Test circuit of fig.2)

V	Current Valtage			1.0		45	V
Vs	Supply Voltage			1.8		15	•
l _d	Total Quiescent Drain Current	R _L = ∞				15	mA
Vos	Output Offset Voltage (between the outputs)	$R_L = 8\Omega$				±80	mV
l _b	Input Bias Current				100		nA
Po	Output Power (f = 1KHz, d = 10%)	R _L = 32Ω		320 50	1000 400 200 65 8		mW
		R _L = 16Ω	$V_{S} = 6V$ $V_{S} = 3V$		800 120		mW mW
		$R_L = 8\Omega$	$V_{\rm S}$ = 4.5V $V_{\rm S}$ = 3V		700 220		mW mW
		$R_L = 4\Omega$	$V_{\rm S} = 3V$ $V_{\rm S} = 2V$		350 80		mW mW
d	Distortion	$R_L = 8\Omega$	P _O = 0.5W f = 1KHz		0.2		%
Gv	Closed Loop Voltage Gain	f = 1KHz			39		dB
Ri	Input Resistance	f = 1KHz		100			KΩ
e _N	Total Input Noise	$R_s = 10k\Omega$	B = Curve A		2.5		μV
		$R_s = 10k\Omega$	B = 22Hz to 22KHz		3		μV
SVR	Supply Voltage Rejection	f = 100Hz			40		dB
В	Power Bandwidth (-3dB)	$R_L = 8\Omega$ $P_O = 1W$			120		KHz

Figure 3: Supply Voltage Rejection vs. Frequency

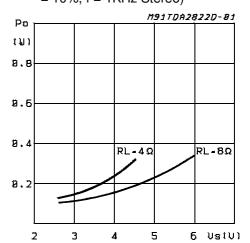
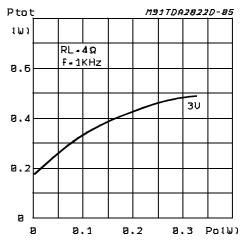
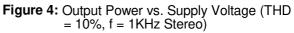
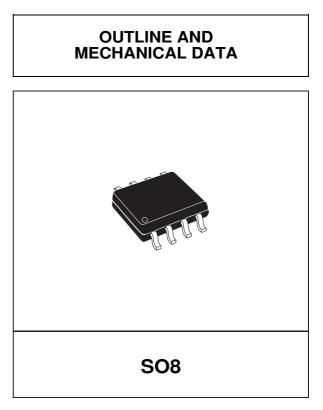
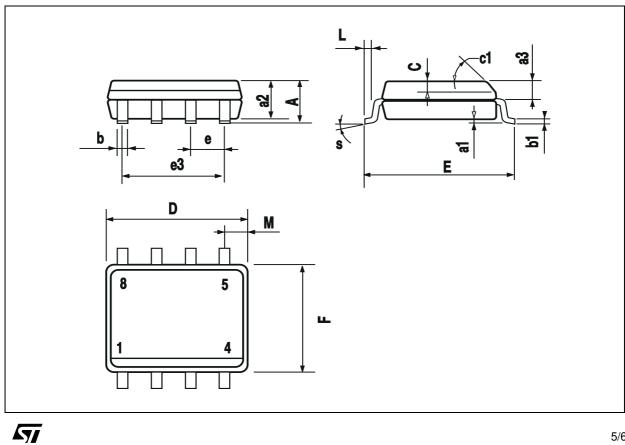





Figure 6: Total Power Dissipation vs. Output Power (Bridge)



DIM.		mm		inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45°	(typ.)			
D (1)	4.8		5.0	0.189		0.197	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F (1)	3.8		4.0	0.15		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						

D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

57