mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TDA2822M

DUAL LOW-VOLTAGE POWER AMPLIFIER

PIN CONNECTION (Top view)

SCHEMATIC DIAGRAM

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	15	V
lo	Peak Output Current	1	Α
P _{tot}	Total Power Dissipation at $T_{amb} = 50 \ ^{\circ}C$ at $T_{case} = 50 \ ^{\circ}C$	1 1.4	W W
T_{stg},T_{j}	Storage and Junction Temperature	- 40, + 150	°C
10		-	

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max.	100	°C/W
R _{th j-case}	Thermal Resistance Junction-pin (4) Max.	70	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Typ. Max. U	
STEREO (1	test circuit of Figure 1)					
Vs	Supply Voltage		1.8		15	V
Vo	Quiescent Output Voltage	$V_s = 3V$		2.7 1.2		V V
l _d	Quiescent Drain Current			6	9	mA
lb	Input Bias Current			100		nA
Po	Output Power (each channel) (f = 1kHz, d = 10%)	$ \begin{array}{ll} {\sf R}_{\sf L}=32\Omega & {\sf V}_{\sf S}=9{\sf V} \\ & {\sf V}_{\sf S}=6{\sf V} \\ & {\sf V}_{\sf S}=4.5{\sf V} \\ & {\sf V}_{\sf S}=3{\sf V} \\ & {\sf V}_{\sf S}=2{\sf V} \\ {\sf R}_{\sf L}=16\Omega & {\sf V}_{\sf S}=6{\sf V} \\ {\sf R}_{\sf L}=8\Omega & {\sf V}_{\sf S}=9{\sf V} \\ & {\sf V}_{\sf S}=6{\sf V} \\ {\sf R}_{\sf L}=4\Omega & {\sf V}_{\sf S}=6{\sf V} \\ & {\sf V}_{\sf S}=4.5{\sf V} \\ & {\sf V}_{\sf S}=3{\sf V} \end{array} $	90 15 170 300 450	300 120 60 20 5 220 1000 380 650 320 110		mW
d	Distortion (f = 1kHz)	$ \begin{array}{l} R_L = 32\Omega & P_o = 40mW \\ R_L = 16\Omega & P_o = 75mW \\ R_L = 8\Omega & P_o = 150mW \end{array} $		0.2 0.2 0.2		% % %
Gv	Closed Loop Voltage Gain	f = 1kHz	36	39	41	dB
ΔG_v	Channel Balance	cO'			± 1	dB
Ri	Input Resistance	f = 1kHz	100			kΩ
e _N	Total Input Noise	$ \begin{array}{l} R_{s} = 10 k \Omega & B = Curve \; A \\ B = 22 Hz \; to \; 22 k Hz \end{array} $		2 2.5		μV μV
SVR	Supply Voltage Rejection	$f = 100Hz, C1 = C2 = 100\mu F$	24	30		dB
Cs	Channel Separation	f = 1kHz		50		dB
BRIDGE (te	est circuit of Figure 2)					

ELECTRICAL CHARACTERISTICS ($V_8 = 6V$, $T_{amb} = 25^{\circ}C$, unless otherwise specified)

Vs	Supply Voltage		1.8		15	V
l _d	Quiescent Drain Current	R _L = ∞		6	9	mA
V _{os}	Output Offset Voltage (between the outputs)	$R_L = 8\Omega$			± 50	mV
l _b	Input Bias Current			100		nA
Po	Output Power (f = 1kHz, d = 10%)	$ \begin{array}{ll} R_{L} = 32\Omega & V_{S} = 9V \\ & V_{S} = 6V \\ & V_{S} = 4.5V \\ & V_{S} = 3V \\ & V_{S} = 2V \\ R_{L} = 16\Omega & V_{S} = 9V \\ & V_{S} = 6V \\ & V_{S} = 3V \\ R_{L} = 8\Omega & V_{S} = 6V \\ & V_{S} = 4.5V \\ & V_{S} = 3V \\ R_{L} = 4\Omega & V_{S} = 4.5V \\ & V_{S} = 3V \\ & V_{S} = 2V \end{array} $	320 50 900 200	1000 400 200 65 8 2000 800 120 1350 700 220 1000 350 80		mW
d	Distortion	$P_o = 0.5W, R_L = 8\Omega, f = 1kHz$		0.2		%
Gv	Closed Loop Voltage Gain	f = 1kHz		39		dB
Ri	Input Resistance	f = 1kHz	100			kΩ
e _N	Total Input Noise	$ \begin{array}{ll} R_{s} = 10 k \Omega & B = Curve \; A \\ B = 22 Hz \; to \; 22 k Hz \end{array} $		2.5 3		μV μV
SVR	Supply Voltage Rejection	f = 100Hz		40		dB

TDA2822M

Figure 1 : Test Circuit (Stereo)

P.C. Board and Components Layout Figure 3 : of the Circuit of Figure 1

¢

າ O 5

R1

0

Θ

O.

(R2 ¥

C5-0185

O GND

Ç4

C5

R3(

Ø

Θ

R4

C.

ł

57

V_(L)O

V_S ⊖ V_O(R)⊖ GND ⊖

õ

Figure 5 : Quiescent Current versus Supply Voltage

Figure 7 : Output Power versus Supply Voltage (THD = 10%, f = 1kHz Stereo)

Figure 9 : Distorsion versus Output Power

57

(Stereo)

Figure 6 : Supply Voltage Rejection versus Frequency

Figure 8 : Distorsion versus Output Power (Stereo)

Figure 10 : Output Power versus Supply Voltage (Bridge)

5/11

Figure 11 : Distorsion versus Output Power (Bridge)

Figure 13 : Total Power Dissipation versus Output Power (Bridge)

Figure 15 : Total Power Dissipation versus Output Power (Bridge)

Figure 12 : Total Power Dissipation versus Output Power (Bridge)

Figure 14 : Total Power Dissipation versus Output Power (Bridge)

ر حک

57

Figure 20 : Low Cost Application in Portable Players (using only one 100µF output capacitor)

51

TDA2822M

OUTLINE AND MAX. 1	MAX.	inch			mm		
MAX. OUTLINE AND 1	MAX.		inch		mm		
1		TYP.	MIN.	MAX.	TYP.	MIN.	DIM.
		0.131			3.32		А
			0.020			0.51	a1
0.065	0.065		0.045	1.65		1.15	В
0.022	0.022		0.014	0.55		0.356	b
0.012	0.012		0.008	0.304		0.204	b1
0.430	0.430			10.92			D
0.384	0.384		0.313	9.75		7.95	E
0		0.100			2.54		е
0 0(0)		0.300			7.62		e3
0		0.300			7.62		e4
0.260	0.260			6.6			F
0.200	0.200			5.08			I
0.150 Minidip	0.150		0.125	3.81		3.18	L
0.060	0.060			1.52			Z

b1

57

obsolete Productist Besolete Productist Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

> > © 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

