imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TDA5051A

Home automation modem

Rev. 5 — 13 January 2011

1. General description

The TDA5051A is a modem IC, specifically dedicated to ASK transmission by means of the home power supply network, at 600 baud or 1200 baud data rate. It operates from a single 5 V supply.

2. Features and benefits

- Full digital carrier generation and shaping
- Modulation/demodulation frequency set by clock adjustment, from microcontroller or on-chip oscillator
- High clock rate of 6-bit D/A (Digital to Analog) converter for rejection of aliasing components
- Fully integrated output power stage with overload protection
- Automatic Gain Control (AGC) at receiver input
- 8-bit A/D (Analog to Digital) converter and narrow digital filtering
- Digital demodulation delivering baseband data
- Easy compliance with EN50065-1 with simple coupling network
- Few external components for low cost applications
- SO16 plastic package

3. Applications

- Home appliance control (air conditioning, shutters, lighting, alarms and so on)
- Energy/heating control
- Amplitude Shift Keying (ASK) data transmission using the home power network

4. Quick reference data

Table 1.	Quick reference data						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DD}	supply voltage			4.75	5.0	5.25	V
I _{DD(tot)}	total supply current	f _{osc} = 8.48 MHz					
		Reception mode		-	28	38	mA
		$\frac{\text{Transmission mode;}}{\text{DATA_IN}} = 0; Z_{\text{L}} = 30 \ \Omega$	[1]	-	47	68	mA
		Power-down mode		-	19	25	mA
f _{cr}	carrier frequency		[2]	-	132.5	-	kHz
f _{osc}	oscillator frequency			6.08	-	9.504	MHz
V _{o(rms)}	output carrier signal (RMS value)	$\overline{\text{DATA}_{\text{IN}}} = \text{LOW};$ Z _L = CISPR16		120	-	122	dBμV
V _{i(rms)}	input signal (RMS value)		[3]	82	-	122	$dB\mu V$
THD	total harmonic distortion on CISPR16 load with coupling network			-	-55	-	dB
T _{amb}	ambient temperature			-50	-	+100	°C

[1] The value of the total transmission mode current is the sum of $I_{DD(RX/TX)(tot)} + I_{DD(PAMP)}$ in the <u>Table 5 "Characteristics"</u>.

[2] Frequency range corresponding to the EN50065-1 band. However, the modem can operate at any lower oscillator frequency.

[3] The minimum value can be improved by using an external amplifier; see application diagrams Figure 19 and Figure 20.

5. Ordering information

Table 2.Ordering information

Type number	Package					
	Name	Description	Version			
TDA5051AT	SO16	plastic small outline package; 16 leads; body width 7.5 mm	SOT162-1			

6. Block diagram

7. **Pinning information**

7.1 Pinning

7.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
DATA_IN	1	digital data input (active LOW)
DATA_OUT	r 2	digital data output (active LOW)
V _{DDD}	3	digital supply voltage
CLK_OUT	4	clock output
DGND	5	digital ground
SCANTES	Т 6	test input (LOW in application)
OSC1	7	oscillator input
OSC2	8	oscillator output
APGND	9	analog ground for power amplifier
TX_OUT	10	analog signal output
V _{DDAP}	11	analog supply voltage for power amplifier
AGND	12	analog ground
V _{DDA}	13	analog supply voltage
RX_IN	14	analog signal input
PD	15	power-down input (active HIGH)
TEST1	16	test input (HIGH in application)

8. Functional description

Both transmission and reception stages are controlled either by the master clock of the microcontroller or by the on-chip reference oscillator connected to a crystal. This ensures the accuracy of the transmission carrier and the exact trimming of the digital filter, thus making the performance totally independent of application disturbances such as component spread, temperature, supply drift and so on.

The interface with the power network is made by means of an LC network (see Figure 15). The device includes a power output stage that feeds a 120 dB_µV (RMS) signal on a typical 30 Ω load.

To reduce power consumption, the IC is disabled by a power-down input (pin PD): in this mode, the on-chip oscillator remains active and the clock continues to be supplied at pin CLK_OUT. For low-power operation in reception mode, this pin can be dynamically controlled by the microcontroller, see <u>Section 8.4 "Power-down mode"</u>.

When the circuit is connected to an external clock generator (see Figure 6), the clock signal must be applied at pin OSC1 (pin 7); OSC2 (pin 8) must be left open-circuit. Figure 7 shows the use of the on-chip clock circuit.

All logic inputs and outputs are compatible with TTL/CMOS levels, providing an easy connection to a standard microcontroller I/O port.

The digital part of the IC is fully scan-testable. Two digital inputs, SCANTEST and TEST1, are used for production test: these pins must be left open-circuit in functional mode (correct levels are internally defined by pull-up or pull-down resistors).

8.1 Transmission mode

To provide strict stability with respect to environmental conditions, the carrier frequency is generated by scanning the ROM memory under the control of the microcontroller clock or the reference frequency provided by the on-chip oscillator. High frequency clocking rejects the aliasing components to such an extent that they are filtered by the coupling LC network and do not cause any significant disturbance. The data modulation is applied through pin DATA_IN and smoothly applied by specific digital circuits to the carrier (shaping). Harmonic components are limited in this process, thus avoiding unacceptable disturbance of the transmission channel (according to CISPR16 and EN50065-1 recommendations). A –55 dB Total Harmonic Distortion (THD) is reached when the typical LC coupling network (or an equivalent filter) is used.

The DAC and the power stage are set in order to provide a maximum signal level of 122 dB μ V (RMS) at the output.

The output of the power stage (TX_OUT) must **always** be connected to a decoupling capacitor, because of a DC level of $0.5V_{DD}$ at this pin, which is present even when the device is not transmitting. This pin must also be **protected against overvoltage and negative transient signals**. The DC level of TX_OUT can be used to bias a unipolar transient suppressor, as shown in the application diagram (see Figure 15).

Direct connection to the mains is done through an LC network for low-cost applications. However, an HF signal transformer could be used when power-line insulation has to be performed.

Remark: In transmission mode, the receiving part of the circuit is **not disabled** and the detection of the transmitted signal is normally performed. In this mode, the gain chosen before the beginning of the transmission is stored, and the **AGC is internally set to –6 dB** as long as DATA_IN is LOW. Then, the old gain setting is **automatically restored**.

8.2 Reception mode

The input signal received by the modem is applied to a wide range input amplifier with AGC (-6 dB to +30 dB). This is basically for noise performance improvement and signal level adjustment, which ensures a maximum sensitivity of the ADC. An 8-bit conversion is then performed, followed by digital band-pass filtering, to meet the CISPR16 normalization and to comply with some additional limitations met in current applications.

After digital demodulation, the baseband data signal is made available after pulse shaping.

The signal pin (RX_IN) is a high-impedance input which has to be protected and DC decoupled for the same reasons as with pin TX_OUT. The high sensitivity (82 dB μ V) of this input requires an efficient 50 Hz rejection filter (realized by the LC coupling network), which also acts as an anti-aliasing filter for the internal digital processing; (see Figure 15).

8.3 Data format

8.3.1 Transmission mode

The data input (DATA_IN) is active LOW: this means that a burst is generated on the line (pin TX_OUT) when DATA_IN pin is LOW.

Pin TX_OUT is in a high-impedance state as long as the device is not transmitting. Successive logic 1s are treated in a Non-Return-to-Zero (NRZ) mode, see pulse shapes in <u>Figure 8</u> and <u>Figure 9</u>.

8.3.2 Reception mode

The data output (pin DATA_OUT) is active LOW; this means that the data output is LOW when a burst is received. Pin DATA_OUT remains LOW as long as a burst is received.

8.4 Power-down mode

Power-down input (pin PD) is active HIGH; this means that the power consumption is minimum when pin PD is HIGH. Now, all functions are disabled, except clock generation.

9. Limiting values

Table 4. In accorda	Limiting values nce with the Absolute Maxi	mum Rating System (IE	EC 60134).		
Symbol	Parameter	Conditions	Min	Мах	Unit
V _{DD}	supply voltage		4.5	5.5	V
f _{osc}	oscillator frequency		-	12	MHz
T _{stg}	storage temperature		-50	+150	°C
T _{amb}	ambient temperature		-50	+100	°C
Tj	junction temperature		-	125	°C

10. Characteristics

Table 5. Characteristics

 $V_{DDD} = V_{DDA} = 5 V \pm 5 \%$; $T_{amb} = -40 \degree C$ to +85 $\degree C$; V_{DDD} connected to V_{DDA} ; DGND connected to AGND.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
V _{DD}	supply voltage		4.75	5	5.25	V
I _{DD(tot)}	total supply current	$f_{osc} = 8.48 \text{ MHz}$				
		Reception mode	-	28	38	mA
		Transmission mode; DATA_IN = 0; $Z_L = 30 \Omega$	[1] -	47	68	mA
		Power-down mode	-	19	25	mA
I _{DD(RX/TX)(tot)}	total analog + digital supply current	$V_{DD} = 5 V \pm 5 \%;$ Transmission or Reception mode	-	28	38	mA
I _{DD(PD)(tot)}	total analog + digital supply current	$V_{DD} = 5 V \pm 5 \%;$ PD = HIGH; Power-down mode	-	19	25	mA
I _{DD(PAMP)}	power amplifier supply current	$\begin{array}{l} V_{DD} = 5 \ V \pm 5 \ \%; \\ \underline{Z_L} = 30 \ \Omega; \\ \overline{DATA_IN} = LOW \ in \\ Transmission \ mode \end{array}$	-	19	30	mA
I _{DD(PAMP)(max)}	maximum power amplifier supply current	$V_{DD} = 5 V \pm 5 \%;$ $\frac{Z_L = 1 \Omega}{DATA_IN} = LOW in$ Transmission mode	-	76	-	mA
DATA_IN and	I PD inputs; DATA_OUT and	CLK_OUT outputs				
V _{IH}	HIGH-level input voltage		$0.2V_{DD} + 0.9$	-	$V_{DD} + 0.5$	V
V _{IL}	LOW-level input voltage		-0.5	-	$0.2V_{\text{DD}}-0.1$	V
V _{OH}	HIGH-level output voltage	$I_{OH} = -1.6 \text{ mA}$	2.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 1.6 mA	-	_	0.45	V

$V_{DDD} = V_{DDA} =$	= 5 V \pm 5 %; T _{amb} = -40 °C to +	-85 °C; V _{DDD} connected t	$o V_D$	DDA; DGND con	nected to	AGND.	
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
OSC1 input a using an exte	and OSC2 output (OSC2 only ernal clock generator)	used for driving extern	al q	uartz crystal; ı	nust be l	eft open-circui	it when
V _{IH}	HIGH-level input voltage			0.7V _{DD}	-	V _{DD} + 0.5	V
V _{IL}	LOW-level input voltage			-0.5	-	$0.2V_{DD}-0.1$	V
V _{OH}	HIGH-level output voltage	I _{OH} = -1.6 mA		2.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 1.6 mA		-	-	0.45	V
Clock							
f _{osc}	oscillator frequency			6.080	-	9.504	MHz
f_{osc}/f_{cr}	ratio between oscillator and carrier frequency			-	64	-	
f _{osc} /f _{CLKOUT}	ratio between oscillator and clock output frequency			-	2	-	
Transmission	n mode						
f _{cr}	carrier frequency	$f_{osc} = 8.48 \text{ MHz}$	[2]	-	132.5	-	kHz
t _{su}	set-up time of the shaped burst	f _{osc} = 8.48 MHz; see <u>Figure 8</u>		-	170	-	μS
t _h	hold time of the shaped burst	f _{osc} = 8.48 MHz; see <u>Figure 8</u>		-	170	-	μS
t _{W(DI)(min)}	minimum pulse width of DATA_IN signal	f _{osc} = 8.48 MHz; see <u>Figure 8</u>		-	190	-	μS
V _{o(rms)}	output carrier signal (RMS value)	$\overline{\text{DATA}_{\text{IN}}}$ = LOW; Z _L = CISPR16		120	-	122	dBμV
I _{o(max)}	power amplifier maximum output current (peak value)	$\overline{\text{DATA}_{\text{IN}}}$ = LOW; Z _L = 1 Ω		-	160	-	mA
Zo	output impedance of the power amplifier			-	5	-	Ω
Vo	output DC level at pin TX_OUT			-	2.5	-	V
THD	total harmonic distortion on CISPR16 load with the coupling network (measured on the first ten harmonics)	$\begin{split} V_{o(rms)} &= 121 \ dB\mu V \ on \\ CISPR16 \ load; \\ \underline{f_{osc}} &= 8.48 \ MHz; \\ DATA_IN &= LOW \\ (no \ modulation); \\ see \ \underline{Figure \ 3} \ and \\ \underline{Figure \ 22} \end{split}$		-	-55	-	dB
B _{-20dB}	bandwidth of the shaped output signal (at –20 dB) on CISPR16 load with the coupling network	$V_{o(rms)} = 121 \text{ dB}\mu\text{V on}$ CISPR16 load; $f_{osc} = 8.48 \text{ MHz}$; DATA_IN = 300 Hz; duty factor = 50 %; see Figure 4		-	3000	-	Hz

Table 5. Characteristics ... continued

Table 5. Characteristics ...continued

 $V_{DDD} = V_{DDA} = 5 V \pm 5 \%$; $T_{amb} = -40 \degree C$ to +85 $\degree C$; V_{DDD} connected to V_{DDA} ; DGND connected to AGND.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Reception mo	ode					
V _{i(rms)}	analog input signal (RMS value)		<u>3</u> 82	-	122	dBμV
VI	DC level at pin RX_IN		-	2.5	-	V
Zi	RX_IN input impedance		-	50	-	kΩ
R _{AGC}	AGC range		-	36	-	dB
t _{c(AGC)}	AGC time constant	f _{osc} = 8.48 MHz; see <u>Figure 5</u>	-	296	-	μS
t _{d(dem)(su)}	demodulation delay set-up time	f _{osc} = 8.48 MHz; see <u>Figure 21</u>	-	350	400	μS
t _{d(dem)(h)}	demodulation delay hold time	f _{osc} = 8.48 MHz; see <u>Figure 21</u>	-	420	470	μS
B _{det}	detection bandwidth	$f_{osc} = 8.48 \text{ MHz}$	-	3	-	kHz
BER	bit error rate	$f_{osc} = 8.48 \text{ MHz};$ 600 baud; S/N = 35 dB; signal 76 dB μ V; see <u>Figure 23</u>	-	1	-	1 × 10 ⁻⁴
Power-up tim	ing					
t _{d(pu)(TX)}	dela <u>y between</u> power-up and DATA_IN in transmission mode	$\begin{array}{l} \text{XTAL} = 8.48 \text{ MHz}; \\ \text{C1} = \text{C2} = 27 \text{ pF}; \\ \text{R}_{\text{p}} = 2.2 \text{ M}\Omega; \\ \text{see } \overline{\text{Figure 10}} \end{array}$	-	1	-	μS
t _{d(pu)(RX)}	delay between power-up and DATA_OUT in reception mode	$\begin{array}{l} \text{XTAL} = 8.48 \text{ MHz}; \\ \text{C1} = \text{C2} = 27 \text{ pF}; \\ \text{R}_{\text{p}} = 2.2 \text{ M}\Omega; \\ \text{f}_{\text{RXIN}} = 132.5 \text{ kHz}; \\ 120 \text{ dB}_{\mu}\text{V} \text{ sine wave}; \\ \text{see } \overline{\text{Figure 11}} \end{array}$	-	1	-	μS
Power-down	timing					
$t_{d(pd)(TX)}$	<u>delay bet</u> ween PD = 0 and DATA_IN in transmission mode	f _{osc} = 8.48 MHz; see <u>Figure 12</u>	-	10	-	μS
t _{d(pd)(RX)}	delay between PD = 0 and DATA_OUT in reception mode	$\begin{array}{l} f_{osc} = 8.48 \text{ MHz}; \\ f_{RXIN} = 132.5 \text{ kHz}; \\ 120 \text{ dB}\mu\text{V} \text{ sine wave}; \\ \text{see } \overline{\text{Figure } 13} \end{array}$	-	500	-	μS
$t_{active(min)}$	minimum active time with T = 10 ms power-down period in reception mode	$\label{eq:fosc} \begin{array}{l} f_{osc} = 8.48 \mbox{ MHz}; \\ f_{RXIN} = 132.5 \mbox{ kHz}; \\ 120 \mbox{ dB}\mu V \mbox{ sine wave}; \\ see \mbox{ Figure 14} \end{array}$	-	1	-	μS

[1] The value of the total transmission mode current is the sum of $I_{DD(RX/TX)(tot)} + I_{DD(PAMP)}$.

[2] Frequency range corresponding to the EN50065-1 band. However, the modem can operate at any lower oscillator frequency.

[3] The minimum value can be improved by using an external amplifier; see application diagrams Figure 19 and Figure 20.

TDA5051A

Fig 3. Carrier spectrum

Product data sheet

11. Timing

11.1 Configuration for clock

Table 6. Clock oscillator parameters

Oscillator frequency f _{osc}	Carrier frequency f _{cr}	Clock output frequency $\frac{1}{2}f_{osc}$	External components
6.080 MHz to 9.504 MHz	95 kHz to 148.5 kHz	3.040 MHz to 4.752 MHz	C1 = C2 = 27 pF to 47 pF; $R_p = 2.2 M\Omega$ to 4.7 MΩ; XTAL = standard quartz crystal

Table 7. Calculation of parameters depending on the clock frequency

Symbol	Parameter	Conditions	Unit
f _{osc}	oscillator frequency	with on-chip oscillator: frequency of the crystal quartz	Hz
		with external clock: frequency of the signal applied at OSC1	Hz
f _{CLKOUT}	clock output frequency	¹ / ₂ f _{osc}	Hz
f _{cr}	carrier frequency/digital filter tuning frequency	¹ / ₆₄ f _{osc}	Hz
t _{su}	set-up time of the shaped burst	23/f _{cr} or 1472/f _{osc}	S
t _h	hold time of the shaped burst	23/f _{cr} or 1472/f _{osc}	S
t _{W(DI)(min)}	minimum pulse width of DATA_IN signal	$t_{su} + 1/f_{cr}$	S

TDA5051A Home automation modem

Table 7.	Calculation of parameters depending on the clock frequency continued				
Symbol	Parameter	Conditions	Unit		
t _{W(burst)(min)}	minimum burst time of $V_{O(DC)}\text{signal}$	$t_{W(DI)(min)} + t_h$	S		
$t_{c(AGC)}$	AGC time constant	2514/f _{osc}	S		
t _{su(demod)}	demodulation set-up time	3200/f _{osc} (max.)	S		
t _{h(demod)}	demodulation hold time	3800/f _{osc} (≈max.)	S		

Table 8. Relationship between DATA_IN and TX_OUT

X = don't care.

PD	DATA_IN	TX_OUT
1	Х	high-impedance
0	1	high-impedance (after t _h)
0	0	active with DC offset

11.2 Timing diagrams

12. Application information

TDA5051A

Product data sheet

© NXP B.V. 2011. All rights reserved.

13. Test information

14. Package outline

Fig 24. Package outline SOT162-1 (SO16)

15. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling ensure that the appropriate precautions are taken as described in *JESD625-A* or equivalent standards.

16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- · Inspection and repair
- Lead-free soldering versus SnPb soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

All information provided in this document is subject to legal disclaimers.

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

16.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see Figure 25) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with <u>Table 9</u> and <u>10</u>

Table 9. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 10. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	350 to 2000	> 2000
< 1.6	260	260	260
1.6 to 2.5	260	250	245
> 2.5	250	245	245

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 25.

TDA5051A

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

17. Abbreviations

Table 11. Abbreviations	
Acronym	Description
ADC	Analog-to-Digital Converter
AGC	Automatic Gain Control
ASK	Amplitude Shift Keying
CMOS	Complementary Metal-Oxide Semiconductor
DAC	Digital-to-Analog Converter
HF	High-Frequency
I/O	Input/Output
IC	Integrated Circuit
LC	inductor-capacitor filter
NRZ	Non-Return-to-Zero
RMS	Root Mean Squared
ROM	Read-Only Memory
THD	Total Harmonic Distortion
TTL	Transistor-Transistor Logic