Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # Wireless Components ASK/FSK Transmitter 868/433 MHz TDA 5100 Version 2.1 Specification June 2001 | Revision Histo | ory | | |----------------------------------|---------------------------------|---| | Current Version | n: 2.1 as of 12.06 | 2001 | | Previous Versi | on: 2.0, November | 2000 | | Page
(in previous
Version) | Page
(in current
Version) | Subjects (major changes since last revision) | | 3-3 3-7 | 3-3 3-7 | Schematics corrected: ESD structures added | | 5-3 5-8 | 5-3 5-8 | Limits tightened for:
Supply Current, Saturation Voltage of Clock Driver Output and Output Power | | 5-5, 5-8 | 5-5,5-8 | Supply-voltage dependency of Output Power added as footnote | | 5-5, 5-8 | 5-5,5-8 | Limits corrected for Input Current CSEL | | | | | ABM®, AOP®, ARCOFI®, BA, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®-54, FALC®-56, FALC®-E1, FALC®-LH, IDEC®, IOM®, IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE, ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC, SLICOFI® are registered trademarks of Infineon Technologies AG. Limits corrected for Low Power Detect Current Edition 30.11.2000 Published by Infineon Technologies AG, Balanstraße 73, 81541 München © Infineon Technologies AG 2001. All Rights Reserved. #### Attention please! 5-3, 5-6 As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies AG is an approved CECC manufacturer. 5-3,5-6 #### Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. #### Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components¹ of the Infineon Technologies AG, may only be used in life-support devices or systems² with the express written approval of the Infineon Technologies AG. - 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. - 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. **Product Info** #### **Product Info** #### **General Description** The TDA5100 is a single chip ASK/ Package FSK transmitter for the frequency bands 868-870 MHz and 433-435 MHz. The IC offers a high level of integration and needs only a few external components. The device contains a fully integrated PLL synthesizer and a high efficiency power amplifier to drive a loop antenna. A special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery live. Additionally features like a power down mode, a low power detect, a selectable crystal oscillator frequency and a divided clock output are implemented. The IC can be used for both ASK and FSK modulation. #### **Features** - fully integrated frequency synthe- - VCO without external components - high efficiency power amplifier - switchable frequency range 868-870/433-435 MHz - ASK/FSK modulation - low supply current (typically 7mA) - voltage supply range 2.1 4 V - power down mode - low voltage sensor - selectable crystal oscillator 6.78 MHz/13.56 MHz - programmable divided clock output for µC - low external component count #### **Applications** - Keyless entry systems - Remote control systems - Alarm systems - Communication systems #### **Ordering Information** | Type | Ordering Code | Package | |----------------------------|---------------|------------| | TDA 5100 | Q67036-A1048 | P-TSSOP-16 | | available on tape and reel | | | # Table of Contents | 1 | Table | of Contents | 1- | |---|-------|--|------| | 2 | Produ | uct Description | 2-1 | | | 2.1 | Overview | 2-2 | | | 2.2 | Applications | 2-2 | | | 2.3 | Features | 2-2 | | | 2.4 | Package Outlines | 2-3 | | 3 | Funct | ional Description | 3-1 | | | 3.1 | Pin Configuration | 3-2 | | | 3.2 | Pin Definitions and Functions | 3-3 | | | 3.3 | Functional Block diagram | 3-7 | | | 3.4 | Functional Blocks | 3-8 | | 4 | Appli | cations | 4-1 | | | 4.1 | 50 Ohm-Output Testboard Schematic | 4-2 | | | 4.2 | 50 Ohm-Output Testboard Layout | 4-3 | | | 4.3 | Bill of material (50 Ohm-Output Testboard) | 4-4 | | | 4.4 | Hints | 4-5 | | | 4.5 | Application Board Schematic | 4-8 | | | 4.6 | Application Board Layout | 4-9 | | | 4.7 | Bill of material (Application Board) | 4-10 | | | 4.8 | Application Board Photo | 4-11 | | 5 | Refer | ence | 5-1 | | | 5.1 | Absolute Maximum Ratings | 5-2 | | | 5.2 | Operating Range | 5-2 | | | 5.3 | AC/DC Characteristics | 5-3 | # Product Description | COII | terits of this chap | itei | | |------|---------------------|------|--| | | | | | | 2 4 | Overview | | | | 2.1 | Overview | 2-2 | |-----|------------------|-----| | 2.2 | Applications | 2-2 | | 2.3 | Features | 2-2 | | 24 | Package Outlines | 2-3 | **Product Description** #### Overview The TDA5100 is a single chip ASK/FSK transmitter for the frequency bands 868-870 MHz and 433-435 MHz. The IC offers a high level of integration and needs only a few external components. The device contains a fully integrated PLL synthesizer and a high efficiency power amplifier to drive a loop antenna. A special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery life. Additional features like a power down mode, a low power detect, a selectable crystal oscillator frequency and a divided clock output are implemented. The IC can be used for both ASK and FSK modulation. #### 2.2 Applications - Keyless entry systems - Remote control systems - Alarm systems - Communication systems #### 2.3 **Features** - fully integrated frequency synthesizer - VCO without external components - high efficiency power amplifier - switchable frequency range 868-870/433-435 MHz - ASK/FSK modulation - low supply current (typically 7 mA) - voltage supply range 2.1 4 V - power down mode - low voltage sensor - selectable crystal oscillator 6.78 MHz/13.56 MHz - programmable divided clock output for μC - low external component count ## 2.4 Package Outlines - 1) Does not include plastic or metal protrusion of 0.15 max. per side - 2) Does not include dambar protrusion Figure 2-1 P-TSSOP-16 | Conter | Contents of this Chapter | | | |---------|--|--|--| | | | | | | 3.1 | Pin Configuration | | | | 3.2 | Pin Definitions and Functions | | | | 3.3 | Functional Block diagram3-7 | | | | 3.4 | Functional Blocks3-8 | | | | 3.4.1 | PLL Synthesizer3-8 | | | | 3.4.2 | Crystal Oscillator | | | | 3.4.3 | Power Amplifier | | | | 3.4.4 | Low Power Detect | | | | 3.4.5 | Power Modes3-10 | | | | 3.4.5.1 | Power Down Mode | | | | 3.4.5.2 | PLL Enable Mode | | | | 3.4.5.3 | Transmit Mode | | | | 3.4.6 | Recommended timing diagrams for ASK- and FSK-Modulation 3-12 | | | # 3.1 Pin Configuration Pin_config.wmf Figure 3-1 IC Pin Configuration | Table 3-1 | Table 3-1 | | | |-----------|-----------|---|--| | Pin No. | Symbol | Function | | | 1 | PDWN | Power Down Mode Control | | | 2 | LPD | Low Power Detect Output | | | 3 | VS | Voltage Supply | | | 4 | LF | Loop Filter | | | 5 | GND | Ground | | | 6 | ASKDTA | Amplitude Shift Keying Data Input | | | 7 | FSKDTA | Frequency Shift Keying Data Input | | | 8 | CLKOUT | Clock Driver Output | | | 9 | CLKDIV | Clock Divider Control | | | 10 | COSC | Crystal Oscillator Input | | | 11 | FSKOUT | Frequency Shift Keying Switch Output | | | 12 | FSKGND | Frequency Shift Keying Ground | | | 13 | PAGND | Power Amplifier Ground | | | 14 | PAOUT | Power Amplifier Output | | | 15 | FSEL | Frequency Range Selection (433 or 868 MHz) | | | 16 | CSEL | Crystal Frequency Selection (6.78 or 13.56 MHz) | | ### 3.2 Pin Definitions and Functions | Table | 3-2 | | | |-------|--------|---|--| | Pin | Symbol | Interface Schematic | Function | | No. | | | | | 1 | PDWN | V_S 0 0 0 0 0 0 0 0 0 0 | Disable pin for the complete transmitter circuit. A logic low (PDWN < 0.7 V) turns off all transmitter functions. A logic high (PDWN > 1.5 V) gives access to all transmitter functions. PDWN input will be pulled up by 40 μ A internally by either setting FSKDTA or ASKDTA to a logic high-state. | | 2 | LPD | V _S
40 μA
2 | This pin provides an output indicating the low-voltage state of the supply voltage VS. $VS < 2.15 \ V \ will \ set \ LPD \ to \ the \ low-state.$ An internal pull-up current of 40 μA gives the output a high-state at supply voltages above 2.15 V. | | 3 | VS | | This pin is the positive supply of the transmitter electronics. An RF bypass capacitor should be connected directly to this pin and returned to GND (pin 5) as short as possible. | | 4 | LF | V _S 140 pF 15 pF 10 kΩ 10 kΩ | Output of the charge pump and input of the VCO control voltage. The loop bandwidth of the PLL is 150 kHz when only the internal loop filter is used. The loop bandwidth may be reduced by applying an external RC network referencing to the positive supply VS (pin 3). | |---|--------|---|--| | 5 | GND | | General ground connection. | | 6 | ASKDTA | 6 +1.2 V
90 kΩ +1.1 V
50 pF 30 μΑ | Digital amplitude modulation can be imparted to the Power Amplifier through this pin. A logic high (ASKDTA > 1.5 V or open) enables the Power Amplifier. A logic low (ASKDTA < 0.5 V) disables the Power Amplifier. | | 7 | FSKDTA | 7
90 kΩ
30 μA | Digital frequency modulation can be imparted to the Xtal Oscillator by this pin. The VCO-frequency varies in accordance to the frequency of the reference oscillator. A logic high (FSKDTA > 1.5V or open) sets the FSK switch to a high impedance state. A logic low (FSKDTA < 0.5 V) closes the FSK switch from FSKOUT (pin 11) to FSKGND (pin 12). A capacitor can be switched to the reference crystal network this way. The Xtal Oscillator frequency will be shifted giving the designed FSK frequency deviation. | | 8 | CLKOUT | ν _s ο 8 | Clock output to supply an external device. An external pull-up resistor has to be added in accordance to the driving requirements of the external device. A clock frequency of 3.39 MHz is selected by a logic low at CLKDIV input (pin9). A clock frequency of 847.5 kHz is selected by a logic high at CLKDIV input (pin9). | |----|--------|-------------------------------------|---| | 9 | CLKDIV | 9 60 kΩ | This pin is used to select the desired clock division rate for the CLKOUT signal. A logic low (CLKDIV < 0.2 V) applied to this pin selects the 3.39 MHz output signal at CLKOUT (pin 8). A logic high (CLKDIV open) applied to this pin selects the 847.5 kHz output signal at CLKOUT (pin 8). | | 10 | COSC | V _s
6 kΩ
100 μΑ | This pin is connected to the reference oscillator circuit. The reference oscillator is working as a negative impedance converter. It presents a negative resistance in series to an inductance at the COSC pin. | | 11 | FSKOUT | V _S V _S 11 12 | This pin is connected to a switch to FSKGND (pin 12). The switch is closed when the signal at FSKDTA (pin 7) is in a logic low state. The switch is open when the signal at FSKDTA (pin 7) is in a logic high state. FSKOUT can switch an additional capacitor to the reference crystal network to pull the crystal frequency by an amount resulting in the desired FSK frequency shift of the transmitter output frequency. | | 12 | FSKGND | | Ground connection for FSK modulation output FSKOUT. | | 13 | PAGND | | Ground connection of the power amplifier. | |----|-------|--|--| | | | | The RF ground return path of the power amplifier output PAOUT (pin 14) has to be concentrated to this pin. | | 14 | PAOUT | 13 | RF output pin of the transmitter. A DC path to the positive supply VS has to be supplied by the antenna matching network. | | 15 | FSEL | V _S +1.2 V
90 kΩ | This pin is used to select the desired transmitter frequency. A logic low (FSEL < 0.5 V) applied to this pin sets the transmitter to the 433 MHz frequency range. A logic high (FSEL open) applied to this pin sets the transmitter to the 868 MHz frequency range. | | 16 | CSEL | V _S +1.2 V V _S 5 μA 60 kΩ +0.8 V | This pin is used to select the desired reference frequency. A logic low (CSEL < 0.2 V) applied to this pin sets the internal frequency divider to accept a reference frequency of 6.78 MHz. A logic high (CSEL open) applied to this pin sets the internal frequency divider to accept a reference frequency of 13.56 MHz. | # 3.3 Functional Block diagram Figure 3-2 Functional Block diagram 9 #### 3.4 Functional Blocks #### 3.4.1 PLL Synthesizer The Phase Locked Loop synthesizer consists of a Voltage Controlled Oscillator (VCO), an asynchronous divider chain, a phase detector, a charge pump and a loop filter. It is fully implemented on chip. The tuning circuit of the VCO consisting of spiral inductors and varactor diodes is on chip, too. Therefore no additional external components are necessary. The nominal center frequency of the VCO is 869 MHz. The oscillator signal is fed both, to the synthesizer divider chain and to the power amplifier. The overall division ratio of the asynchronous divider chain is 128 in case of a 6.78 MHz crystal or 64 in case of a 13.56 MHz crystal and can be selected via CSEL (pin 16). The phase detector is a Type IV PD with charge pump. The passive loop filter is realized on chip. #### 3.4.2 Crystal Oscillator The crystal oscillator operates either at 6.78 MHz or at 13.56 MHz. The reference frequency can be chosen by the signal at CSEL (pin 16). | Crystal Frequency | |-------------------| | 6.78 MHz | | 13.56 MHz | | | 1) Low: Voltage at pin < 0.2 V 2) Open: Pin open For both quartz frequency options, 847.5 kHz or 3.39 MHz are available as output frequencies of the clock output CLKOUT (pin 8) to drive the clock input of a micro controller. The frequency at CLKOUT (pin 8) is controlled by the signal at CLKDIV (pin 9) | Table 3-4 | | | | | |--------------------|------------------|--|--|--| | CLKDIV (pin 9) | CLKOUT Frequency | | | | | Low ¹⁾ | 3.39 MHz | | | | | Open ²⁾ | 847.5 kHz | | | | 1) Low: Voltage at pin < 0.2 V 2) Open: Pin open To achieve FSK transmission, the oscillator frequency can be detuned by a fixed amount by switching an external capacitor via FSKOUT (pin 11). The condition of the switch is controlled by the signal at FSKDTA (pin 7). | Table 3-5 | | | | | |---|------------|--|--|--| | FSKDTA (pin7) | FSK Switch | | | | | Low ¹⁾ | CLOSED | | | | | Open ²⁾ , High ³⁾ | OPEN | | | | 1) Low: Voltage at pin < 0.5 V 2) Open: Pin open 3) High: Voltage at pin > 1.5 V #### 3.4.3 Power Amplifier In case of operation in the 868-870 MHz band, the power amplifier is fed directly from the voltage controlled oscillator. In case of operation in the 433-435 MHz band, the VCO frequency is divided by 2. This is controlled by FSEL (pin 15) as described in the table below. | Table 3-6 | | | | | |--------------------|-------------------------|--|--|--| | FSEL (pin 15) | Radiated Frequency Band | | | | | Low ¹⁾ | 433 MHz | | | | | Open ²⁾ | 868 MHz | | | | 1) Low: Voltage at pin < 0.5 V 2) Open: Pin open The Power Amplifier can be switched on and off by the signal at ASKDTA (pin 6). | Table 3-7 | | | | | |---|-----------------|--|--|--| | ASKDTA (pin 6) | Power Amplifier | | | | | Low ¹⁾ | OFF | | | | | Open ²⁾ , High ³⁾ | ON | | | | 1) Low: Voltage at pin < 0.5 V 2) Open: Pin open 3) High: Voltage at pin > 1.5 V The Power Amplifier has an Open Collector output at PAOUT (pin 14) and requires an external pull-up coil to provide bias. The coil is part of the tuning and matching LC circuitry to get best performance with the external loop antenna. To achieve the best power amplifier efficiency, the high frequency voltage swing at PAOUT (pin 14) should be twice the supply voltage. The power amplifier has its own ground pin PAGND (pin 13) in order to reduce the amount of coupling to the other circuits. #### 3.4.4 Low Power Detect The supply voltage is sensed by a low power detector. When the supply voltage drops below 2.15 V, the output LPD (pin 2) switches to the low-state. To minimize the external component count, an internal pull-up current of 40 μ A gives the output a high-state at supply voltages above 2.15 V. The output LPD (pin 2) can either be connected to ASKDTA (pin 6) to switch off the PA as soon as the supply voltage drops below 2.15 V or it can be used to inform a micro-controller to stop the transmission after the current data packet. #### 3.4.5 Power Modes The IC provides three power modes, the POWER DOWN MODE, the PLL ENABLE MODE and the TRANSMIT MODE. #### 3.4.5.1 Power Down Mode In the POWER DOWN MODE the complete chip is switched off. The current consumption is less than 100nA. #### 3.4.5.2 PLL Enable Mode In the PLL ENABLE MODE the PLL is switched on but the power amplifier is turned off to avoid undesired power radiation during the time the PLL needs to settle. The turn on time of the PLL is determined mainly by the turn on time of the crystal oscillator and is less than 1 msec when the specified crystal is used. The current consumption is typically 3.5 mA. #### 3.4.5.3 Transmit Mode In the TRANSMIT MODE the PLL is switched on and the power amplifier is turned on too. The current consumption of the IC is typically 7 mA when using a proper transforming network at PAOUT, see Figure 4-1. #### 3.4.5.4 Power mode control The bias circuitry is powered up via a voltage V > 1.5 V at the pin PDWN (pin 1). When the bias circuitry is powered up, the pins ASKDTA and FSKDTA are pulled up internally. Forcing the voltage at the pins low overrides the internally set state. Alternatively, if the voltage at ASKDTA or FSKDTA is forced high externally, the PDWN pin is pulled up internally via a current source. In this case, it is not necessary to connect the PDWN pin, it is recommended to leave it open. The principle schematic of the power mode control circuitry is shown in Figure 3-5. Power_Mode.wmf Figure 3-5 Power mode control circuitry Table 3-8 provides a listing of how to get into the different power modes | Table 3-8 | | | | | |--------------------|-----------------|------------|--------------|--| | PDWN | FSKDTA | ASKDTA | MODE | | | Low ¹⁾ | Low, Open | Low, Open | POWER DOWN | | | Open ²⁾ | Low | Low | POWER DOWN | | | High ³⁾ | Low, Open, High | Low | PLL ENABLE | | | Open | High | Low | I LL LINADLL | | | High | Low, Open, High | Open, High | | | | Open | High | Open, High | TRANSMIT | | | Open | Low, Open, High | High | | | 1) Low: Voltage at pin < 0.7 V (PDWN) Voltage at pin < 0.5 V (FSKDTA, ASKDTA) 2) Open: Pin open 3) High: Voltage at pin > 1.5 V Other combinations of the control pins PDWN, FSKDTA and ASKDTA are not recommended. #### 3.4.6 Recommended timing diagrams for ASK- and FSK-Modulation ASK Modulation using FSKDTA and ASKDTA, PDWN not connected ASK_mod.wmf Figure 3-6 ASK Modulation FSK Modulation using FSKDTA and ASKDTA, PDWN not connected FSK_mod.wmf Figure 3-7 FSK Modulation #### Alternative ASK Modulation, FSKDTA not connected. Alt_ASK_mod.wmf Figure 3-8 Alternative ASK Modulation #### Alternative FSK Modulation Figure 3-9 Alternative FSK Modulation # 4 Applications #### **Contents of this Chapter** | 4.1 | 50 Ohm-Output Testboard Schematic | . 4-2 | |-----|--|-------| | 4.2 | 50 Ohm-Output Testboard Layout | . 4-3 | | 4.3 | Bill of material (50 Ohm-Output Testboard) | . 4-4 | | 4.4 | Hints | . 4-5 | | 4.5 | Application Board Schematic | . 4-8 | | 4.6 | Application Board Layout | . 4-9 | | 4.7 | Bill of material (Application Board) | 4-10 | | 4.8 | Application Board Photo | 4-11 | ## 4.1 50 Ohm-Output Testboard Schematic 50ohm_test_v5.wmf Figure 4-1 50Ω -output testboard schematic ## 4.2 50 Ohm-Output Testboard Layout Oben (3.00 09/14/99 tda5100_v5.tc) Figure 4-2 Top Side of TDA 5100-Testboard with 50 Ω -Output Unten (3.00 09/14/99 tda5100_v5.tc) Figure 4-3 Bottom Side of TDA 5100-Testboard with 50 Ω -Output # 4.3 Bill of material (50 Ohm-Output Testboard) | Table 4 | -1 Bill of materia | I | | | | | |---------|--------------------------|---------|---------|--------------|-------------------------------|---| | Part | Value | 434 MHz | 869 MHz | ASK | FSK | Specification | | R1 | 4.7 kΩ | | | | | 0805, ± 5% | | R2 | | | | | 12 kΩ | 0805, ± 5% | | R3A | | | | 15 kΩ | | 0805, ± 5% | | R3F | | | | | 15 kΩ | 0805, ± 5% | | R4 | open | | | | | 0805, ± 5% | | C1 | 47 nF | | | | | 0805, X7R, ± 10% | | C2 | | 39 pF | 47 pF | | | 0805, COG, ± 5% | | C3 | | 3.9 pF | 1.8 pF | | | 0805, COG, ± 0.1 pF | | C4 | | 330 pF | 100 pF | | | 0805, COG, ± 5% | | C5 | 1 nF | | | | | 0805, X7R, ± 10% | | C6 | 8.2 pF | | | | | 0805, COG, ± 0.1 pF | | C7 | | | | 0Ω
Jumper | 434MHz: 22 pF
868MHz: 47pF | 0805 , COG, $\pm 5\%$
0805 , 0Ω Jumper | | C8 | | 15 pF | 8.2 pF | | | 0805, COG, ± 5% | | L1 | | 100 nH | 33 nH | | | TOKO LL2012-J | | L2 | | 39 nH | 15 nH | | | 39 nH: TOKO LL2012-J
15 nH: TOKO LL1608-J | | Q3 | 13.56875 MHz,
CL=20pF | | | | | Tokyo Denpa TSS-3B
13568.75 kHz
Spec.No. 20-18906 | | IC1 | | TDA5100 | | | | | | T1 | Taster | | | | | replaced by a short | | X1 | SMA-S | | | | | SMA standing | | X2 | SMA-S | | | | | SMA standing | **Applications** #### 4.4 Hints #### 1. Application Hints on the crystal oscillator As mentioned before, the crystal oscillator achieves a turn on time less than 1 msec. To achieve this, a NIC oscillator type is implemented in the TDA 5100. The input impedance of this oscillator is a negative resistance in series to an inductance. Therefore the load capacitance of the crystal CL (specified by the crystal supplier) is transformed to the capacitance Cv. $$Cv = \frac{1}{\frac{1}{CL} + \omega^2 L}$$ Formula 1) CL: crystal load capacitance for nominal frequency ω: angular frequency L: inductivity of the crystal oscillator #### **Example for the ASK-Mode:** Referring to the application circuit, in ASK-Mode the capacitance C7 is replaced by a short to ground. Assume a crystal frequency of 13.56 MHz and a crystal load capacitance of CL = 20 pF. The inductance L is specified within the electrical characteristics at 13.5 MHz to a value of 11 uH. Therefore C6 is calculated to 7.7 pF. $$Cv = \frac{1}{\frac{1}{CL} + \omega^2 L} = C6$$