

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









Wireless Control Components



Edition 2007-05-02

Published by Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany

© Infineon Technologies AG 2007-05-02. All Rights Reserved.

#### Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

#### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies Representatives worldwide (www.infineon.com).

#### Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

# **TDA7200**

ASK/FSK Single Conversion Receiver Version 1.0

Wireless Control Components



| Revision H  | istory:     | 2007-05-02                         | V 1.0 |
|-------------|-------------|------------------------------------|-------|
| Previous Ve | ersion:     | none                               |       |
| Page        | Subjects (m | najor changes since last revision) |       |
|             |             |                                    |       |
|             |             |                                    |       |
|             |             |                                    |       |
|             |             |                                    |       |
|             |             |                                    |       |

#### We Listen to Your Comments

**TDA7200** 

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: sensors@infineon.com



| Table of                                                                                                                 | Contents                                                                                                                                                                                                                                                                                 | Page                                         |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <b>1</b><br>1.1<br>1.2<br>1.3                                                                                            | Product Description Overview Features Application                                                                                                                                                                                                                                        | 6<br>6                                       |
| 2<br>2.1<br>2.2<br>2.3<br>2.4<br>2.4.1<br>2.4.2<br>2.4.3<br>2.4.4<br>2.4.5<br>2.4.6<br>2.4.7<br>2.4.8<br>2.4.9<br>2.4.10 | Functional Description Pin Configuration Pin Definition and Functions Functional Block Diagram Functional Block Description Low Noise Amplifier (LNA) Mixer PLL Synthesizer Crystal Oscillator Limiter FSK Demodulator Data Filter Data Slicer Peak Detector Bandgap Reference Circuitry |                                              |
| 3<br>3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8<br>3.9                                                         | Applications Application Circuit Data Filter Design Crystal Load Capacitance Calculation Crystal Frequency Calculation Data Slicer Threshold Generation ASK/FSK-Data Path Functional Description FSK Mode ASK Mode Principle of the Precharge Circuit                                    | 19<br>21<br>22<br>23<br>25<br>26             |
| 4<br>4.1<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.2<br>4.3<br>4.4                                                        |                                                                                                                                                                                                                                                                                          | 32<br>32<br>32<br>33<br>33<br>34<br>42<br>43 |
| 5                                                                                                                        | Package Outlines                                                                                                                                                                                                                                                                         | 46                                           |



#### **Product Description**

### 1 Product Description

#### 1.1 Overview

The IC is a very low power consumption single chip FSK/ASK Superheterodyne Receiver (SHR) for the frequency band 400 to 440 MHz. The IC offers a high level of integration and needs only a few external components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a PLL synthesiser, a crystal oscillator, a limiter with RSSI generator, a PLL FSK demodulator, a data filter, an advanced data comparator (slicer) with selection between two threshold modes and a peak detector. Additionally there is a power down feature to save current and extend battery life, and two selectable alternatives of generating the data slicer threshold.

#### 1.2 Features

- Low supply current (Is = 5.7 mA typ. in FSK mode, Is = 5.0 mA typ. in ASK mode)
- Supply voltage range 5V ±10%
- Power down mode with very low supply current (50nA typ.)
- FSK and ASK demodulation capability
- Fully integrated VCO and PLL Synthesiser
- ASK sensitivity better than -106 dBm over specified temperature range (-20 to +70°C)
- FSK sensitivity better than -100 dBm over specified temperature range (-20 to +70°C)
- Limiter with RSSI generation, operating at 10.7MHz
- 2nd order low pass data filter with external capacitors
- Data slicer with selection between two threshold modes (see Section 2.4.8)

### 1.3 Application

- Remote Control Systems
- Alarm Systems
- Low Bitrate Communication Systems

#### Table 1 Order Information

| Туре    | Ordering Code | Package     |
|---------|---------------|-------------|
| TDA7200 | SP000296473   | PG-TSSOP-28 |



# 2 Functional Description

## 2.1 Pin Configuration

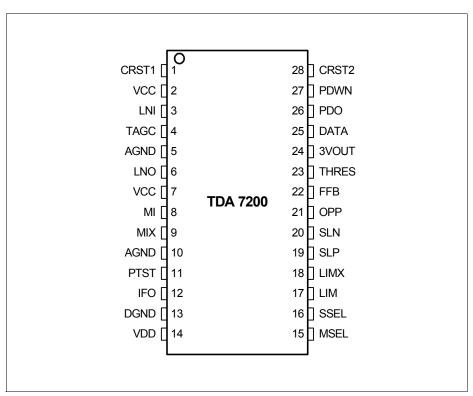



Figure 1 Pin Configuration



### 2.2 Pin Definition and Functions

Table 2 Pin Defintion and Function

| Pin<br>No. | Symbol | Equivalent I/O Schematic | Function                        |
|------------|--------|--------------------------|---------------------------------|
| 1          | CRST1  | 4.15V<br>50uA            | External Crystal<br>Connector 1 |
| 2 3        | VCC    |                          | 5V Supply                       |
| 3          | LNI    | 57uA 3 500uA             | LNA Input                       |



| Pin<br>No. | Symbol | Equivalent I/O Schematic | Function                     |
|------------|--------|--------------------------|------------------------------|
| 4          | TAGC   | 4.3V<br>4.2uA<br>1.5uA   | AGC Time<br>Constant Control |
| 5          | AGND   |                          | Analogue<br>Ground Return    |
| 6          | LNO    | 5V 1k                    | LNA Output                   |
| 7          | VCC    |                          | 5V Supply                    |



| Pin<br>No. | Symbol | Equivalent I/O Schematic  | Function                            |
|------------|--------|---------------------------|-------------------------------------|
| 8          | MI     |                           | Mixer Input                         |
| 9          | MIX    | 2k 2k 400uA               | Complementary Mixer Input           |
| 10         | AGND   |                           | Analogue<br>Ground Return           |
| 11         | PTST   |                           | has to be left open                 |
| 12         | IFO    | 300uA<br>12<br>60<br>4.5k | 10.7 MHz IF<br>Mixer Output         |
| 13         | DGND   |                           | Digital Ground<br>Return            |
| 14         | VDD    |                           | 5V Supply (PLL<br>Counter Circuity) |



| Pin<br>No. | Symbol | Equivalent I/O Schematic     | Function                                 |
|------------|--------|------------------------------|------------------------------------------|
| 15         | MSEL   | 40k                          | ASK/FSK<br>Modulation<br>Format Sector   |
|            |        | 15                           |                                          |
| 16         | SSEL   | 16 40k                       | Data Slicer<br>Reference Level<br>Sector |
| 17         | LIM    |                              | Limiter Input                            |
| 18         | LIMX   | 2.4V<br>0<br>15k<br>17<br>18 | Complementary<br>Limiter Input           |



| Pin<br>No. | Symbol | Equivalent I/O Schematic | Function                       |
|------------|--------|--------------------------|--------------------------------|
| 19         | SLP    | 19 100 3k 80µA           | Data Slicer<br>Positive Input  |
| 20         | SLN    | 20 10k                   | Data Slicer<br>Negative Input  |
| 21         | OPP    | 21 200 5uA               | OpAmp<br>Noninverting<br>Input |
| 22         | FFB    | 22 100k                  | Data Filter<br>Feedback Pin    |



| Pin<br>No. | Symbol | Equivalent I/O Schematic                | Function                |
|------------|--------|-----------------------------------------|-------------------------|
| 23         | THRES  | 5uA                                     | AGC Threshold<br>Input  |
|            |        | 23 10k                                  | _                       |
| 24         | 3VOUT  |                                         | 3V Reference<br>Output  |
|            |        | 24 20kΩ 3.1V                            |                         |
| 25         | DATA   | 25 ———————————————————————————————————— | Data Output             |
| 26         | PDO    | 26 446k                                 | Peak Detector<br>Output |



| Pin<br>No. | Symbol | Equivalent I/O Schematic | Function                        |
|------------|--------|--------------------------|---------------------------------|
| 27         | PDWN   | 220k                     | Power Down<br>Input             |
| 28         | CRST2  | 4.15\<br>50uA            | External Crystal<br>Connector 2 |



### 2.3 Functional Block Diagram

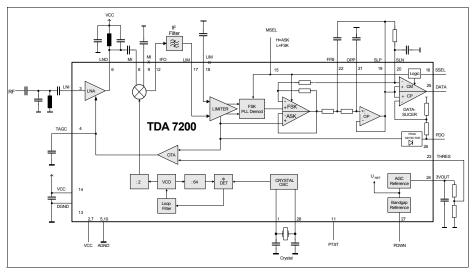



Figure 2 Block Diagram

### 2.4 Functional Block Description

# 2.4.1 Low Noise Amplifier (LNA)

The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20dB. The gain figure is determined by the external matching networks situated ahead of LNA and between the LNA output LNO (Pin 6) and the Mixer Inputs MI and MIX (Pins 8 and 9). The noise figure of the LNA is approximately 3dB, the current consumption is 500µA. The gain can be reduced by approximately 18dB. The switching point of this AGC action can be determined externally by applying a threshold voltage at the THRES pin (Pin 23). This voltage is compared internally with the received signal (RSSI) level generated by the limiter circuitry. In case that the RSSI level is higher than the threshold voltage the LNA gain is reduced and vice versa. The threshold voltage can be generated by attaching a voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3V output generated from the internal bandgap voltage and the THRES pin as described in Section 3.1. The time constant of the AGC action can be determined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen along with the appropriate threshold voltage according to the intended operating case and interference scenario to be expected during operation. The optimum choice of AGC time constant and the threshold voltage is described in **Section 3.1**.



#### 2.4.2 **Mixer**

The Double Balanced Mixer downconverts the input frequency (RF) in the range of 400-440MHz to the intermediate frequency (IF) at 10.7MHz with a voltage gain of approximately 21dB by utilising either high- or low-side injection of the local oscillator signal. In case the mixer is interfaced only single-ended, the unused mixer input has to be tied to ground via a capacitor. The mixer is followed by a low pass filter with a corner frequency of 20MHz in order to suppress RF signals to appear at the IF output (IFO pin). The IF output is internally consisting of an emitter follower that has a source impedance of approximately  $330\Omega$  to facilitate interfacing the pin directly to a standard 10.7MHz ceramic filter without additional matching circuitry.

### 2.4.3 PLL Synthesizer

The Phase Locked Loop synthesizer consists of a VCO, an asynchronous divider chain, a phase detector with charge pump and a loop filter and is fully implemented on-chip. The VCO is including spiral inductors and varactor diodes. The frequency range of the VCO guaranteed over production spread and the specified temperature range is 820 to 860MHz. The oscillator signal is fed both to the synthesiser divider chain and to the downconverting mixer. The VCO signal is divided by two before it is fed to the Mixer. Depending on whether high- or low-side injection of the local oscillator is used, the receiving frequency range is 400 to 420MHz and 420 to 440MHz - see also Section 3.4.

### 2.4.4 Crystal Oscillator

The calculation of the value of the necessary crystal load capacitance is shown in **Section 3.3**, the crystal frequency calculation is explained in **Section 3.4**.

#### 2.4.5 Limiter

The Limiter is an AC coupled multistage amplifier with a cumulative gain of approximately 80 dB that has a bandpass-characteristic centred around 10.7 MHz. It has a typical input impedance of 330  $\Omega$  to allow for easy interfacing to a 10.7 MHz ceramic IF filter. The limiter circuit also acts as a Receive Signal Strength Indicator (RSSI) generator which produces a DC voltage that is directly proportional to the input signal level as can be seen in **Figure 4**. This signal is used to demodulate ASK-modulated receive signals in the subsequent baseband circuitry. The RSSI output is applied to the modulation format switch, to the Peak Detector input and to the AGC circuitry.

In order to demodulate ASK signals the MSEL pin has to be in its 'High'-state as described in the next chapter.



#### 2.4.6 FSK Demodulator

To demodulate frequency shift keyed (FSK) signals a PLL circuit is used that is contained fully on chip. The Limiter output differential signal is fed to the linear phase detector as is the output of the 10.7 MHz center frequency VCO. The demodulator gain is typically 200µV/kHz. The passive loop filter output that is comprised fully on chip is fed to both the VCO and the modulation format switch described in more detail below. This signal is representing the demodulated signal with low frequencies applied to the demodulator demodulated to logic zero and high frequencies demodulated to logic ones. However this is only valid in case the local oscillator is low-side injected to the mixer which is applicable to receive frequencies above 420MHz. In case of receive frequencies below 420MHz high frequencies are demodulated as logical zeroes due to a sign inversion in the downconversion mixing process as the L0 is high-side injected to the mixer. See also Section 3.4.

The modulation format switch is actually a switchable amplifier with an AC gain of 11 that is controlled by the **MSEL** pin (Pin 15) as shown in the following table. This gain was chosen to facilitate detection in the subsequent circuits. The DC gain is 1 in order not to saturate the subsequent Data Filter wih the DC offset produced by the demodulator in case of large frequency offsets of the IF signal. The resulting frequency characteristic and details on the principle of operation of the switch are described in **Section 3.6**.

Table 3 MSEL Pin Operating States

| MSEL              | Modulation Format |
|-------------------|-------------------|
| Open              | ASK               |
| Shorted to ground | FSK               |

The demodulator circuit is switched off in case of reception of ASK signals.

#### 2.4.7 Data Filter

The data filter comprises an OP-Amp with a bandwidth of 100kHz used as a voltage follower and two  $100k\Omega$  on-chip resistors. Along with two external capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of the capacitor values is described in **Section 3.2**.



#### 2.4.8 Data Slicer

The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows for a maximum receive data rate of up to 100kBaud. The maximum achievable data rate also depends on the IF Filter bandwidth and the local oscillator tolerance values. Both inputs are accessible. The output delivers a digital data signal (CMOS-like levels) for subsequent circuits. A self-adjusting slicer-threshold on pin 20 its generated by a RC-term. In ASK-mode alternatively a scaled value of the voltage at the PDO-output (approx. 87%) can be used as the slicer-threshold as shown in Table 4. The data slicer threshold generation alternatives are described in more detail in Section 3.5.

Table 4 SSEL Pin Operating States

| SSEL | MSEL | Selected Slicing Level (SL)           |
|------|------|---------------------------------------|
| X    | Low  | external SL on Pin 20 (RC-term, e.g.) |
| High | High | external SL on Pin 20 (RC-term, e.g.) |
| Low  | High | 87% of PDO-output (approx.)           |

#### 2.4.9 Peak Detector

The peak detector generates a DC voltage which is proportional to the peak value of the receive data signal. A capacitor is necessary. The input is connected to the output of the RSSI-output of the Limiter, the output is connected to the **PDO** pin (Pin 26). This output can be used as an indicator for the received signal strength to use in wake-up circuits and as a reference for the data slicer in ASK mode. Note that the RSSI level is also output in case of FSK mode.

## 2.4.10 Bandgap Reference Circuitry

A Bandgap Reference Circuit provides a temperature stable reference voltage for the device. A power down mode is available to switch off all subcircuits which is controlled by the PWDN pin (Pin 27) as shown in the following table. The supply current drawn in this case is typically 50nA.

Table 5 PDWN Pin Operating States

| PDWN                   | Operating State |
|------------------------|-----------------|
| Open or tied to ground | Powerdown Mode  |
| Tied to Vs             | Receiver On     |

# 3 Applications

### 3.1 Application Circuit

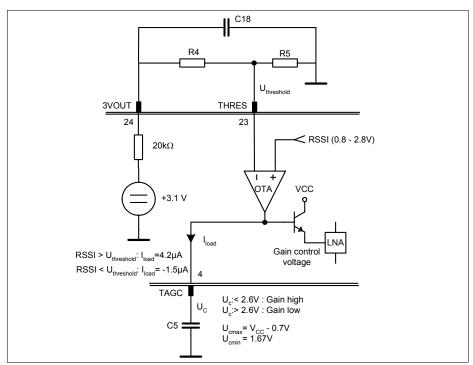



Figure 3 LNA Automatic Gain Control Circuity

The LNA automatic gain control circuitry consists of an operational transimpedance amplifier that is used to compare the received signal strength signal (RSSI) generated by the Limiter with an externally provided threshold voltage  $U_{thres}$ . As shown in the following figure the threshold voltage can have any value between approximately 0.8 and 2.8V to provide a switching point within the receive signal dynamic range.

This voltage  $U_{thres}$  is applied to the **THRES** pin (Pin 23) The threshold voltage can be generated by attaching a voltage divider between the **3VOUT** pin

(Pin 24) which provides a temperature stable 3V output generated from the internal bandgap voltage and the **THRES** pin. If the RSSI level generated by the Limiter is higher than  $U_{thres}$ , the OTA generates a positive current  $I_{load}$ . This yields a voltage rise on the **TAGC** pin (Pin 4). Otherwise, the OTA generates a negative current. These currents do not have the same values in order to achieve a fast-attack and slow-release action of the



AGC and are used to charge an external capacitor which finally generates the LNA gain control voltage.

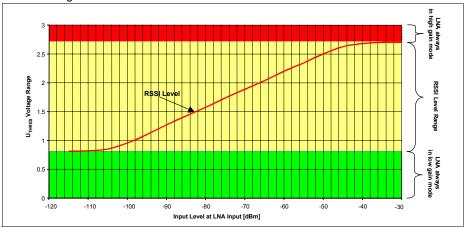



Figure 4 RSSI Level and Permissive AGC Threshold Levels

The switching point should be chosen according to the intended operating scenario. The determination of the optimum point is described in the accompanying Application Note, a threshold voltage level of 1.8V is apparently a viable choice. It should be noted that the output of the **3VOUT** pin is capable of driving up to  $50\mu\text{A}$ , but that the **THRES** pin input current is only in the region of 40nA. As the current drawn out of the **3VOUT** pin is directly related to the receiver power consumption, the power divider resistors should have high impedance values. The sum of R1 and R2 has to be  $600\text{k}\Omega$  in order to yield 3V at the **3VOUT** pin. R1 can thus be chosen as  $240\text{k}\Omega$ , R2 as  $360\text{k}\Omega$  to yield an overall **3VOUT** output current of  $5\mu\text{A}^{1)}$  and a threshold voltage of 1.8V

**Note:** If the LNA gain shall be kept in either high or low gain mode this has to be accomplished by tying the **THRES** pin to a fixed voltage. In order to achieve high gain mode operation, a voltage higher than 2.8V shall be applied to the **THRES** pin, such as a short to the **3VOLT** pin. In order to achieve low gain mode operation **THRES** has to be connected to GND.

As stated above the capacitor connected to the **TAGC** pin is generating the gain control voltage of the LNA due to the charging and discharging currents of the OTA and thus is also responsible for the AGC time constant. As the charging and discharging currents are not equal two different time constants will result. The time constant corresponding to the charging process of the capacitor shall be chosen according to the data rate. According to measurements performed at Infineon the capacitor value should be greater than 47nF.

<sup>1)</sup> note the  $20k\Omega$  resistor in series with the 3.1V internal voltage source

### 3.2 Data Filter Design

Utilising the on-board voltage follower and the two  $100k\Omega$  on-chip resistors a 2nd order Sallen-Key low pass data filter can be constructed by adding 2 external capacitors between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as depicted in the following figure and described in the following formulas<sup>1)</sup>.

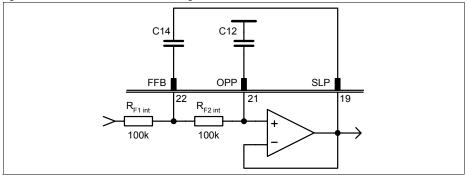



Figure 5 Data Filter Design

with  $R_{F1int} = R_{F2int} = R$ 

$$C14 = \frac{2Q\sqrt{b}}{R2\pi f_{3dB}} \quad C12 = \frac{\sqrt{b}}{4QR\pi f_{3dB}}$$

with

$$Q = \frac{\sqrt{b}}{a}$$

Q is the qualify factor of the poles where, in case of a Bessel filter a=1.3617, b=0.618 and thus Q=0.577

and in case of a Butter worth filter a=1.414, b=1 and thus Q=0.71

Example: Butter worth filter with  $f_{3dB}$ =5kHz and R=100k $\Omega$ : C14=450pF, C12=225pF

<sup>1)</sup> taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999

### 3.3 Crystal Load Capacitance Calculation

The value of the capacitor necessary to achieve that the crystal oscillator is operating at the intended frequency is determined by the reactive part of the negative resistance of the oscillator circuit as shown in **Section 4.1.3** and by the crystal specifications given by the crystal manufacturer.

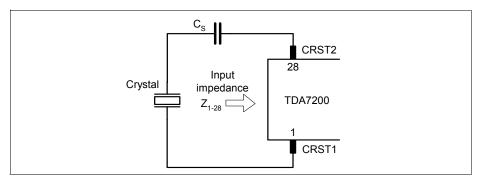



Figure 6 Determination of Series Capacitance Vale for the Quartz Oscillator

The required series capacitor for a crystal with specified load capacitance  $C_L$  can be calculated as

$$C_S = \frac{1}{\frac{1}{C_L} + 2\pi f X_L}$$

C<sub>1</sub> is the nominal load capacitance specified by the crystal manufacturer.

Example:

13.4 MHz:  $C_L = 12 \text{ pF}$   $X_L = 1010 \Omega$   $C_S = 5.9 \text{ pF}$ 

This value may be obtained by putting two capacitors in series to the crystal, such as 22pF and 8.2pF for 13.4MHz.

But please note that the calculated  $C_S$ -value includes all parasitic.

### 3.4 Crystal Frequency Calculation

As described in **Section 2.4.3** the operating range of the on-chip VCO is wide enough to guarantee a receive frequency range between 400 and 440MHz. The VCO signal is divided by 2 before applied to the mixer. This local oscillator signal can be used to downconvert the RF signals both with high- or low-side injection at the mixer. High-side



injection of the local oscillator has to be used for receive frequencies between 400 and 420MHz. In this case the local oscillator frequency is calculated by adding the IF frequency (10.7 MHz) to the RF frequency. Thus the higher frequency of a FSK-modulated signal is demodulated as a logical zero (low).

Low-side injection has to be used for receive frequencies above 420 MHz. The local oscillator frequency is calculated by subtracting the IF frequency (10.7 MHz) from the RF frequency then. In this case no sign-inversion occurs and the higher frequency of a FSK-modulated signal is demodulated as a logical one (high). The overall division ratio in the PLL is 32.

Therefore the crystal frequency may be calculated by using the following formula:

$$f_{QU} = \frac{f_{RF} \pm 10.7}{32}$$

with

 $f_{\mathsf{RF}}$  receive frequency

 $f_{LO}$  local oscillator (PLL) frequency ( $f_{RF} \pm 10.7$ )

 $f_{OU}$  quartz crystal oscillator frequency

32 ratio of local oscillator (PLL) frequency and crystal frequency.

This yields the following example:

$$f_{QU} = \frac{434.2MHz - 10.7MHz}{32} = 13.234375 MHz$$

#### 3.5 Data Slicer Threshold Generation

The threshold of the data slicer can be generated using an external R-C integrator as shown in Figure 7.

The time constant  $T_A$  of this circuit including also the internal resistors  $R_{F3int}$  and  $R_{F4int}$  (see **Figure 9**) has to be significantly larger than the longest period of no signal change  $T_I$  within the data sequence.

In order to keep distortion low, the minimum value for R is  $20k\Omega$ .



T<sub>A</sub> has to be calculated as

$$T_A = \frac{R1 \cdot (R_{F3\text{int}} + R_{F4\text{int}})}{R1 + R_{F3\text{int}} + R_{F4\text{int}}} \cdot C13 = R1II(R_{F3\text{int}} + R_{F4\text{int}}) \cdot C13 \qquad ... for ASK$$

and

$$T_{A} = \frac{R1 \cdot R_{F4 \text{int}}}{R1 + R_{F3 \text{int}} + R_{F4 \text{int}}} \cdot C13 \qquad = \frac{R1II(R_{F3 \text{int}} + R_{F4 \text{int}})}{v} \cdot C13 \qquad ... for \ FSK$$

### R1, R<sub>F3 int</sub>, R<sub>F4 int</sub> and C13 see also Figure 7 and Figure 9

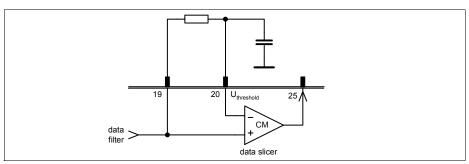



Figure 7 Data Slicer Threshold Generation with External R-C Integrator

In case of ASK operation another possibility for threshold generation is to use the peak detector in connection with an internal resistive divider and one capacitor as shown in **Figure 8**. For selecting the peak detector as reference for the slicing level a logic low as to be applied on the SSEL pin.

In case of MSEL is high (or open), which means that ASK-Mode is selected, a logic low on the SSEL pin yields a logic high on the AND-output and thus the peak-detector is selected (see **Figure 9**).

In case of FSK the MSEL-pin and furthermore the one input of the AND-gate is low, so the peak detector can not be selected.

The capacitor value is depending on the coding scheme and the protocol used.

Data Sheet 24 V 1.0. 2007-05-02



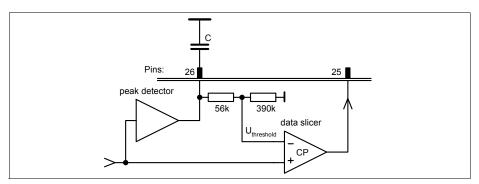



Figure 8 Data Slicer Threshold Generation Utilising the Peak Detector

### 3.6 ASK/FSK-Data Path Functional Description

The TDA7200 is containing an ASK/FSK switch which can be controlled via Pin 15 (MSEL). This switch is actually consisting of 2 operational amplifiers that are having a gain of 1 in case of the ASK amplifier and a gain of 11 in case of the FSK amplifier in order to achieve an appropriate demodulation gain characteristic. In order to compensate for the DC-offset generated especially in case of the FSK PLL demodulator there is a feedback connection between the threshold voltage of the bit slicer comparator (Pin 20) to the negative input of the FSK switch amplifier.

In ASK-mode alternatively to the voltage at Pin 20 (SLN) a value of approx. 87% of the peak-detector output-voltage at Pin 26 (PDO) can be used as the slicer-reference level.

The slicing reference level is generated by an internal voltage divider ( $R_{T1int}$ ,  $R_{T2int}$ ), which is applied on the peak detector output.

The selection between these modes is controlled by Pin 16 (SSEL), as described in **Section 3.5**.

This is shown in Figure 9.