: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Wireless Components

ASK/FSK Single Conversion Receiver
TDA7210 Version 1.0

Data Sheet December 2008

Revision History		
Current Version: 1.0 as of 03.12.08		
Previous Version: none		
Page (in previous Version)	Page(s) (in current Version)	Subjects (major changes since last revision)

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
wirelesscontrol@infineon.com

Edition December 2008

Published by Infineon Technologies AG,
Am Campeon 1-12
85579 Neubiberg, Germany
(C) 2008 Infineon Technologies AG

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions, and prices, please contact the nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and Infineon Technologies Representatives worldwide (www.infineon.com),

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies Components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/ or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Product Info

General Description The IC is a very low power consumption single chip FSK/ASK Superheterodyne Receiver (SHR) for the frequency bands 810 to 870 MHz and 400 to 440 MHz that is pin compatible with the Receiver TDA5210. The IC offers a high level of integration and needs only a few external components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a PLL synthesiser, a crystal oscillator, a limiter with RSSI generator, a PLL FSK demodulator, a data filter, a data comparator (slicer) and a peak detector. Additionally there is a power down feature to save battery life.

Package

- Selectable frequency ranges 810870 MHz and $400-440 \mathrm{MHz}$
- Limiter with RSSI generation, operating at 10.7 MHz
- Selectable reference frequency
- 2nd order low pass data filter with external capacitors
- Data slicer with self-adjusting threshold

■ FSK sensitivity <-100dBm

- Alarm Systems
- Low Bitrate Communication Systems

Type	Ordering Code	Package
TDA7210	SP000524274	PG-TSSOP-28
samples available on tape and reel		

Table of Contents

1 Table of Contents i
2 Product Description 1
2.1 Overview 2
2.2 Application 2
2.3 Features 2
2.4 Package Outlines 3
3 Functional Description 1
3.1 Pin Configuration 2
3.2 Pin Definition and Function 3
3.3 Functional Block Diagram 9
3.4 Functional Blocks 10
3.4.1 Low Noise Amplifier (LNA) 10
3.4.2 Mixer 10
3.4.3 PLL Synthesizer 10
3.4.4 Crystal Oscillator 11
3.4.5 Limiter 11
3.4.6 FSK Demodulator 12
3.4.7 Data Filter 12
3.4.8 Data Slicer 12
3.4.9 Peak Detector 13
3.4.10 Bandgap Reference Circuitry 13
4 Applications 1
4.1 Choice of LNA Threshold Voltage and Time Constant 2
4.2 Data Filter Design 4
4.3 Quartz Load Capacitance Calculation 5
4.4 Quartz Frequency Calculation 6
4.5 Data Slicer Threshold Generation 7
4.6 ASK/FSK Switch Functional Description 8
4.6.1 FSK Mode 8
4.6.2 ASK Mode 10
4.7 Principle of the Precharge Circuit 11
5 Reference 1
5.1 Electrical Data 2
5.1.2 Operating Range 3
5.1.3 AC/DC Characteristics at $\mathrm{TAMB}=25^{\circ} \mathrm{C}$ 4
5.1.4 AC/DC Characteristics at $\mathrm{TAMB}=-40$ to $85^{\circ} \mathrm{C}$ 9
5.2 Test Circuit 12
5.3 Test Board Layouts 13
5.4 Bill of Materials 15

Product Description

Contents of this Chapter
2.1 Overview 2-2
2.2 Application 2-2
2.3 Features 2-2
2.4 Package Outlines 2-3

2.1 Overview

The IC is a very low power consumption single chip FSK/ASK Superheterodyne Receiver (SHR) for the frequency bands 810 to 870 MHz and 400 to 440 MHz that is pin compatible with the Receiver TDA5210. The IC offers a high level of integration and needs only a few external components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a PLL synthesiser, a crystal oscillator, a limiter with RSSI generator, a PLL FSK demodulator, a data filter, a data comparator (slicer) and a peak detector. Additionally there is a power down feature to save battery life.

2.2 Application

```
- Keyless Entry Systems
- Remote Control Systems
- Alarm Systems
- Low Bitrate Communication Systems
```


2.3 Features

■ Low supply current (at $868 \mathrm{MHz} \mathrm{I}_{\mathrm{s}}=5.9 \mathrm{~mA}$ typ. FSK mode, 5.2 mA typ. ASK mode)

- Supply voltage range $5 \mathrm{~V} \pm 10 \%$
- Power down mode with very low supply current (50nA typ)
- FSK and ASK demodulation capability
- Fully integrated VCO and PLL Synthesiser
- RF input sensitivity ASK < - 107dBm
- RF input sensitivity FSK <-100dBm
- Selectable frequency ranges $810-870 \mathrm{MHz}$ and $400-440 \mathrm{MHz}$
- Selectable reference frequency
- Limiter with RSSI generation, operating at 10.7 MHz
- 2nd order low pass data filter with external capacitors
- Data slicer with self-adjusting threshold

2.4 Package Outlines

Index Marking

1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion

Figure 2-1 PG-TSSOP-28 package outlines

3
 Functional Description

Contents of this Chapter
3.1 Pin Configuration 3-2
3.2 Pin Definition and Function 3-3
3.3 Functional Block Diagram 3-9
3.4 Functional Blocks 3-10

3.1 Pin Configuration

Figure 3-1 IC Pin Configuration
\qquad
Functional Description

3.2 Pin Definition and Function

In the subsequent table the internal circuits connected to the pins of the device are shown. ESD-protection circuits are omitted to ease reading.

Pin No.	Symbol	Equivalent I/O-Schematic	Function
1	CRST1		External Crystal Connector 1
2	VCC		5V Supply
3	LNI		LNA Input

Functional Description

Functional Description

Functional Description

3.3 Functional Block Diagram

runction_7200.wmt
Figure 3-2 Main Block Diagram

3.4 Functional Blocks

3.4.1 Low Noise Amplifier (LNA)

The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20 dB . The gain figure is determined by the external matching networks situated ahead of LNA and between the LNA output LNO (Pin 6) and the Mixer Inputs MI and MIX (Pins 8 and 9). The noise figure of the LNA is approximately 3dB, the current consumption is $500 \mu \mathrm{~A}$. The gain can be reduced by approximately 18 dB . The switching point of this AGC action can be determined externally by applying a threshold voltage at the THRES pin (Pin 23). This voltage is compared internally with the received signal (RSSI) level generated by the limiter circuitry. In case that the RSSI level is higher than the threshold voltage the LNA gain is reduced and vice versa. The threshold voltage can be generated by attaching a voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3 V output generated from the internal bandgap voltage and the THRES pin as described in Section 4.1. The time constant of the AGC action can be determined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen along with the appropriate threshold voltage according to the intended operating case and interference scenario to be expected during operation. The optimum choice of AGC time constant and the threshold voltage is described in Section 4.1.

3.4.2 Mixer

The Double Balanced Mixer downconverts the input frequency (RF) in the range of $400-440 \mathrm{MHz} / 810-870 \mathrm{MHz}$ to the intermediate frequency (IF) at 10.7 MHz with a voltage gain of approximately 21 dB by utilising either high- or low-side injection of the local oscillator signal. In case the mixer is interfaced only single-ended, the unused mixer input has to be tied to ground via a capacitor. The mixer is followed by a low pass filter with a corner frequency of 20 MHz in order to suppress RF signals to appear at the IF output (IFO pin). The IF output is internally consisting of an emitter follower that has a source impedance of approximately 330Ω to facilitate interfacing the pin directly to a standard 10.7 MHz ceramic filter without additional matching circuitry.

3.4.3 PLL Synthesizer

The Phase Locked Loop synthesiser consists of a VCO, an asynchronous divider chain, a phase detector with charge pump and a loop filter and is fully implemented on-chip. The VCO is including on-chip spiral inductors and varactor diodes. It's nominal centre frequency is 840 MHz , the operating range guaranteed over the temperature range specified is 820 to 860 MHz . Depending on whether high- or low-side injection of the local oscillator is used the receive frequency ranges are 810 to 840 and 840 to 870 MHz or 400 to 420 and 420 to 440 MHz (see also Section 4.4). No additional external components are neces-
sary.
The oscillator signal is fed both to the synthesiser divider chain and to the downconverting mixer. In case of operation in the 400 to 440 MHz range, the signal is divided by two before it is fed to the mixer. This is controlled by the selection pin FSEL (Pin 11) as described in the following table. The overall division ratio of the divider chain can be selected to be either 128 or 64 , depending on the frequency of the reference oscillator quartz (see below and Section 4.4). The loop filter is also realised fully on-chip.

Table 3-2 FSEL Pin Operating States	RF Frequency
FSEL	$400-440 \mathrm{MHz}$
Open	$810-870 \mathrm{MHz}$
Shorted to ground	

3.4.4 Crystal Oscillator

The on-chip crystal oscillator circuitry allows for utilisation of quartzes both in the 6 and 13 MHz range as the overall division ratio of the PLL can be switched between 64 and 128 via the CSEL (Pin 16) pin according to the following table.

Table 3-3 CSEL. Pin Operating States	
CSEL	Crystal Frequency
Open	$6 . x x \mathrm{MHz}$
Shorted to ground	$13 . x x \mathrm{MHz}$

The calculation of the value of the necessary quartz load capacitance is shown in Section 4.3, the quartz frequency calculation is explained in Section 4.4.

3.4.5 Limiter

The Limiter is an AC coupled multistage amplifier with a cumulative gain of approximately 80 dB that has a bandpass-characteristic centred around 10.7 MHz. It has a typical input impedance of 330Ω to allow for easy interfacing to a 10.7 MHz ceramic IF filter. The limiter circuit also acts as a Receive Signal Strength Indicator (RSSI) generator which produces a DC voltage that is directly proportional to the input signal level as can be seen in Figure 4-2. This signal is used to demodulate ASK-modulated receive signals in the subsequent baseband circuitry. The RSSI output is applied to the modulation format switch, to the Peak Detector input and to the AGC circuitry.

In order to demodulate ASK signals the MSEL pin has to be left open as described in the next chapter.

3.4.6 FSK Demodulator

To demodulate frequency shift keyed (FSK) signals a PLL circuit is used that is contained fully on chip. The Limiter output differential signal is fed to the linear phase detector as is the output of the 10.7 MHz center frequency VCO. The demodulator gain is typically $200 \mu \mathrm{~V} / \mathrm{kHz}$. The passive loop filter output that is comprised fully on chip is fed to both the VCO and the modulation format switch described in more detail below. This signal is representing the demodulated signal with high frequencies applied to the demodulator demodulated to logic ones and low frequencies demodulated to logic zeroes. Please note that due to this behaviour a sign inversion of the data occurs in case of high-side injection of the local oscillator at receive frequencies below 840 or 420 MHz , respectively. See also.
The modulation format switch is actually a switchable amplifier with an AC gain of 11 that is controlled by the MSEL pin (Pin 15) as shown in the following table. This gain was chosen to facilitate detection in the subsequent circuits. The DC gain is 1 in order not to saturate the subsequent Data Filter wih the DC offset produced by the demodulator in case of large frequency offsets of the IF signal. The resulting frequency characteristic and details on the principle of operation of the switch are described in Section 4.6.

Table 3-4 MSEL Pin Operating States	Modulation Format
MSEL	ASK
Open	FSK
Shorted to ground	

The demodulator circuit is switched off in case of reception of ASK signals.

3.4.7 Data Filter

The data filter comprises an OP-Amp with a bandwidth of 100 kHz used as a voltage follower and two $100 \mathrm{k} \Omega$ on-chip resistors. Along with two external capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of the capacitor values is described in Section 4.2.

3.4.8 Data Slicer

The data slicer is a fast comparator with a bandwidth of 100 kHz . This allows for a maximum receive data rate of up to 100 kBaud . The maximum achievable data rate also depends on the IF Filter bandwidth and the local oscillator tolerance values. Both inputs are accessible. The output delivers a digital data signal (CMOS-like levels) for sbsequent circuits. The self-adjusting threshold on pin 20 its generated by RC-term or peak detector depending on the baseband coding scheme. The data slicer threshold generation alternatives are described in more detail in Section 4.5.

3.4.9 Peak Detector

The peak detector generates a DC voltage which is proportional to the peak value of the receive data signal. An external RC network is necessary. The input is connected to the output of the RSSI-output of the Limiter, the output is connected to the PDO pin (Pin 26). This output can be used as an indicator for the received signal strength to use in wake-up circuits and as a reference for the data slicer in ASK mode. Note that the RSSI level is also output in case of FSK mode.

3.4.10 Bandgap Reference Circuitry

A Bandgap Reference Circuit provides a temperature stable reference voltage for the device. A power down mode is available to switch off all subcircuits which is controlled by the PWDN pin (Pin 27) as shown in the following table. The supply current drawn in this case is typically 50nA.

Table 3-5 PDWN Pin Operating States	
PDWN	Operating State
Open or tied to ground	Powerdown Mode
Tied to Vs	Receiver On

4 Applications

Contents of this Chapter
4.1 Choice of LNA Threshold Voltage and Time Constant 4-2
4.2 Data Filter Design 4-4
4.3 Quartz Load Capacitance Calculation 4-5
4.4 Quartz Frequency Calculation 4-6
4.5 Data Slicer Threshold Generation 4-7
4.6 ASK/FSK Switch Functional Description 4-8
4.7 Principle of the Precharge Circuit 4-11

4.1 Choice of LNA Threshold Voltage and Time Constant

In the following figure the internal circuitry of the LNA automatic gain control is shown.

Figure 4-1 LNA Automatic Gain Control Circuitry

The LNA automatic gain control circuitry consists of an operational transimpedance amplifier that is used to compare the received signal strength signal (RSSI) generated by the Limiter with an externally provided threshold voltage $\mathrm{U}_{\text {thres. }}$. As shown in the following figure the threshold voltage can have any value between approximately 0.8 and 2.8 V to provide a switching point within the receive signal dynamic range.
This voltage $U_{\text {thres }}$ is applied to the THRES pin (Pin 23) The threshold voltage can be generated by attaching a voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable $3 V$ output generated from the internal bandgap voltage and the THRES pin. If the RSSI level generated by the Limiter is higher than $U_{\text {thres }}$, the OTA generates a positive current $I_{\text {load }}$. This yields a voltage rise on the TAGC pin (Pin 4). Otherwise, the OTA generates a negative current. These currents do not have the same values in order to achieve a fast-attack and slow-release action of the AGC and are used to charge an external capacitor which finally generates the LNA gain control voltage.

RSSI-AGC.wmf
Figure 4-2 RSSI Level and Permissive AGC Threshold Levels
The switching point should be chosen according to the intended operating scenario. The determination of the optimum point is described in the accompanying Application Note, a threshold voltage level of 1.8 V is apparently a viable choice. It should be noted that the output of the 3VOUT pin is capable of driving up to $50 \mu \mathrm{~A}$, but that the THRES pin input current is only in the region of 40 nA . As the current drawn out of the 3VOUT pin is directly related to the receiver power consumption, the power divider resistors should have high impedance values. The sum of R1 and R2 has to be $600 \mathrm{k} \Omega$ in order to yield 3 V at the 3VOUT pin. R1 can thus be chosen as $240 \mathrm{k} \Omega$, R2 as $360 \mathrm{k} \Omega$ to yield an overall 3VOUT output current of $5 \mu \mathrm{~A}^{1}$ and a threshold voltage of 1.8 V
Note: If the LNA gain shall be kept in either high or low gain mode this has to be accomplished by tying the THRES pin to a fixed voltage. In order to achieve always high gain mode operation, a voltage higher than 3.3 V shall be applied to the THRES pin. A short to the 3VOLT pin will keep the LNA in high gain mode at least over a large RF-input level range. But to switch the LNA reliable into high gain mode over the whole RF-input level range, either a voltage higher than 3.3 V has to be applied on pin 23 as mentioned above or, as alternative, a 330 k resistor in parallel with a 47 nF capacitor can be connected between pin 4 and GND. Whereas the capacitor should be placed as close as possible to pin 4. In order to achieve low gain mode operation a voltage lower than 0.7 V shall be applied to the THRES, such as a short to ground.

As stated above the capacitor connected to the TAGC pin is generating the gain control voltage of the LNA due to the charging and discharging currents of the OTA and thus is also responsible for the AGC time constant. As the charging and discharging currents are not equal two different time constants will result. The time constant corresponding to the charging process of the capacitor shall be chosen according to the data rate. According to measurements performed at Infineon the capacitor value should be greater than 47 nF .

1. note the $20 \mathrm{k} \Omega$ resistor in series with the 3.1 V internal voltage source

4.2 Data Filter Design

Utilising the on-board voltage follower and the two $100 \mathrm{k} \Omega$ on-chip resistors a 2nd order Sallen-Key low pass data filter can be constructed by adding 2 external capacitors between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as depicted in the following figure and described in the following formulas ${ }^{1}$.

Filter_Design.wmi
Figure 4-3 Data Filter Design

$$
C 14=\frac{2 Q \sqrt{b}}{R 2 \pi f_{3 d B}} \quad C 12=\frac{\sqrt{b}}{4 Q R \pi f_{3 d B}}
$$

with

$$
Q=\frac{\sqrt{b}}{a}
$$

the quality factor of the poles
where
in case of a Bessel filter $a=1.3617, b=0.618$
and thus $Q=0.577$
and in case of a Butterworth filter $a=1.414, b=1$
and thus $\mathrm{Q}=0.71$

Example: Butterworth filter with $f_{3 d B}=5 \mathrm{kHz}$ and $\mathrm{R}=100 \mathrm{k} \Omega$:
$\mathrm{C}_{14}=450 \mathrm{pF}, \mathrm{C}_{12}=225 \mathrm{pF}$

1. taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999
