

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

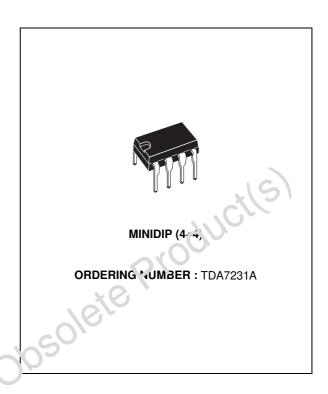
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

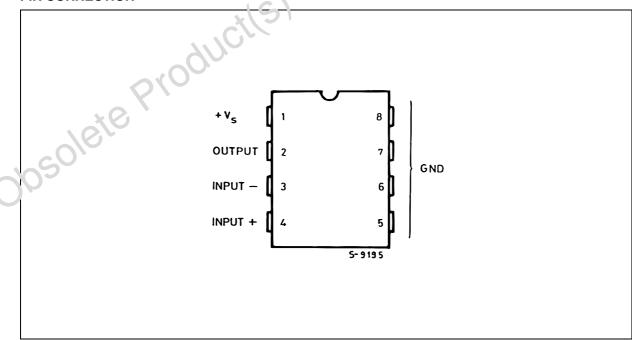
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



TDA7231A

1.6W AUDIO AMPLIFIER


- OPERATING VOLTAGE 1.8 TO 15 V
- LOW QUIESCENT CURRENT
- HIGH POWER CAPABILITY
- LOW CROSSOVER DISTORTION
- SOFT CLIPPING

DESCRIPTION

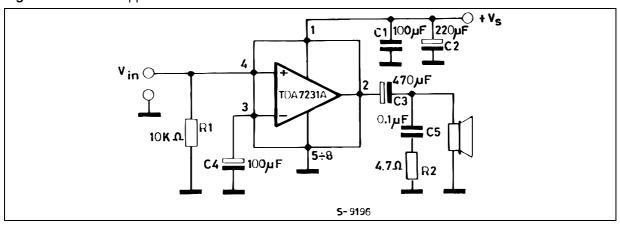
The TDA7231A is a monolithic integrated circuit in 4 + 4 lead minidip package. It is intended for use as class AB power amplifier with wide range of supply voltage in portable radios, cassette recorders and players, etc.

PIN CONNECTION

September 2003

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	16	V
P _{tot}	Total Power Dissipation at T _{amb} = 50 °C at T _{case} = 70 °C	1.25 4	W
lo	Output Peak Current	1	Α
T_{stg}, T_{j}	Storage and Junction Temperature	- 40 to 150	°C


THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max.	80	°C/W
R _{th j-pins}	Thermal Resistance Junction-pins Max.	15	°C/W

ELECTRICAL CHARACTERISTICS (V_s = 6 V, T_{amb} = 25 °C, unless otherwise specified)

Symbol	Parameter	Te	st Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage			1.8		15	٧
Vo	Quiescent Out Voltage	$V_S = 6 V$ $V_S = 3 V$			2.7 1.2		V
I _d	Quiescent Drain Current				3.6	9	mA
l _b	Input Bias Current				100		nA
P _o	Output Power	$ d = 10\% \\ V_s = 12V \\ V_s = 9V \\ V_s = 6V \\ V_s = 6V \\ V_s = 3V \\ V_s = 3V $	$R_{L} = 8\Omega$ $R_{L} = 4\Omega$		1.8 1.6 0.4 0.7 110 70		W W W mW mW
d	Distortion	$P_o = 0.2 \text{ W}$ $f = 1 \text{ kHz}$ $R_L = 8 \Omega$			0.3		%
G _v	Closed Loop Voltage Gain				38		dB
R _{in}	Input Resistance	f = 1kHz		100			kΩ
e _N	Total Input Noise	$R_s = 10k\Omega$	B = Curve A B = 22Hz to 22kHz		2 3		μV μV

Figure 1: Test and Application Circuit

2/5

Figure 2 : P.C. Board and Components Layout of the figure 1 (1:1 scale)

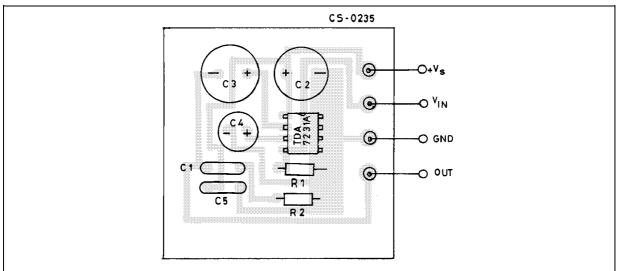


Figure 3: Output Power versus Supply Voltage

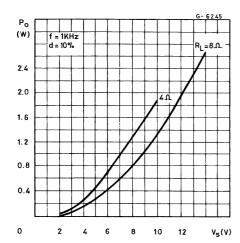


Figure 5 : Quiescent Output Voltage versus Supply Voltage

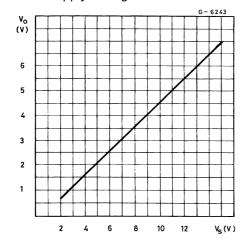
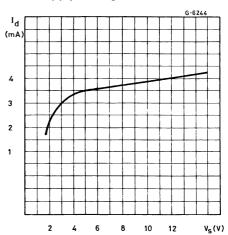
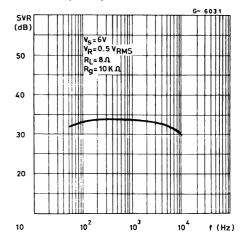
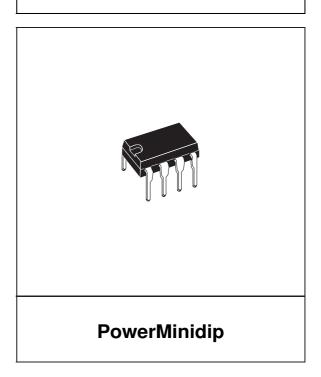
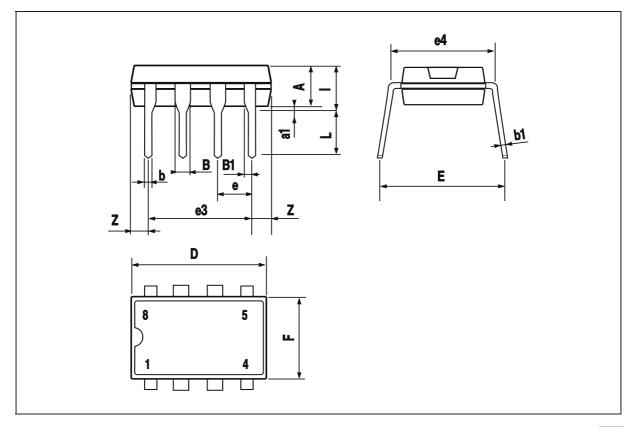


Figure 4: Quiescent Current versus Supply Voltage


Figure 6 : Supply Voltage Rejection versus Frequency

DIM.	mm			inch			
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α		3.3			0.130		
a1	0.7			0.028			
В	1.39		1.65	0.055		0.065	
B1	0.91		1.04	0.036		0.041	
b		0.5			0.020		
b1	0.38		0.5	0.015		0.020	
D			9.8			0.386	
Е		8.8			0.346		
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			7.1			0.280	
I			4.8			0.189	
L		3.3			0.130		
Z	0.44		1.6	0.017		0.063	

OUTLINE AND MECHANICAL DATA

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com.

