imall

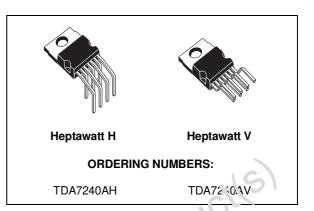
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



TDA7240A

20W BRIDGE AMPLIFIER FOR CAR RADIO

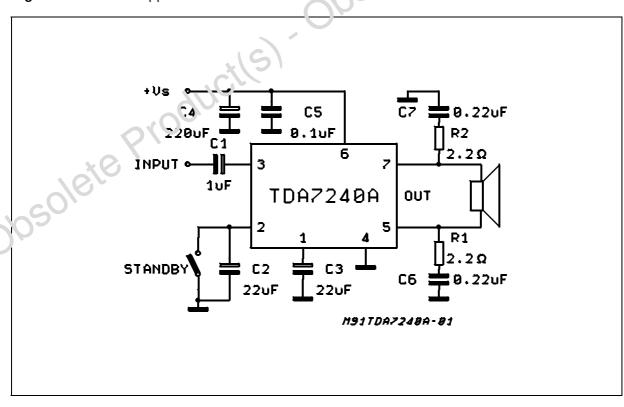
- COMPACT HEPTAWATT PACKAGE
- FEW EXTERNAL COMPONENTS
- OUTPUT PROTECTED AGAINST SHORT CIRCUITS TO GROUND AND ACROSS LOAD
- DUMP TRANSIENT
- THERMAL SHUTDOWN
- LOUDSPEAKER PROTECTION
- HIGH CURRENT CAPABILITY
- LOW DISTORTION/LOW NOISE

Reliable operation is guaranteed by a comprehen-

sive array of on-chip protection seatures. These include protection against AC and DC output short

circuits (to ground a) a across the load), load dump

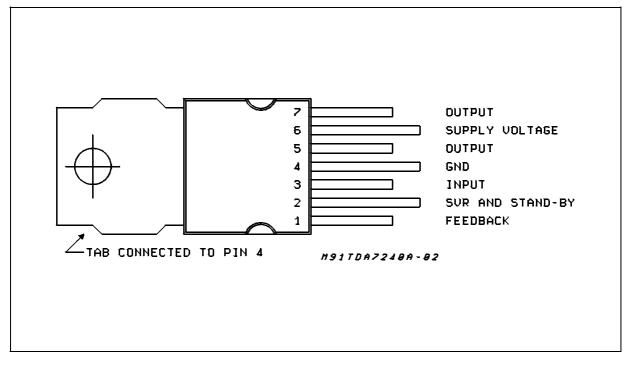
transients, and junction overtemperature. Additio-


nally, the TDA/240A protects the loudspeaker when

one output is short-circuited to ground.

DESCRIPTION

The TDA7240A is a 20W bridge audio amplifier IC designed specially for car radio applications. Thanks to the low external part count and compact Heptawatt 7-pin power package the TDA7240A occupies little space on the printed circuit board.


Figure 1: Test and Application Circuit

December 1998

TDA7240A

PIN CONNECTION (Top view)

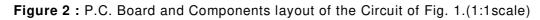
ABSOLUTE MAXIMUM RATINGS

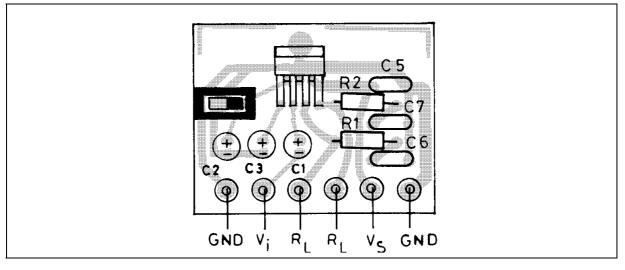
Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	18	V
Vs	DC Supply Voltage	28	V
Vs	Peak Supply Voltage (for 50ms)	40	V
l _o (*)	Peak Output Current (non repetitive t = 0.1ms)	4.5	А
l _o (*)	Peak Output Current (repetitive f ≥10Hz)	3.5	А
P _{tot}	Power Dissipation at Tcase = 85°C	16	W
T_{stg}, T_{j}	Storage and Junction Temperature	-40 to 150	°C

(*) Internally limited

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case Max.	4	V

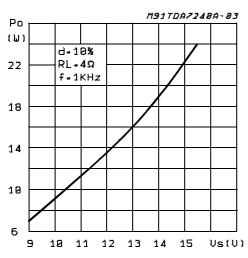

51


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage				18	V
Vos	Output Offset Voltage				150	mV
l _d	Total Quiescent Current	$R_L = 4\Omega$		65	120	mA
Po	Output Power		$= 4\Omega $ 18 = 8 Ω 10	20 12		W W
d	Distortion	$ \begin{array}{l} R_{L} = 4\Omega & f = 1 \\ P_{o} = 50 \text{mW to } 12 \text{W} \end{array} $	1kHz	0.1	0.5	%
		$\begin{array}{l} R_L = 8\Omega & \qquad f = 1\\ P_o = 50 \text{mW to } 12 \text{W} \end{array}$	1kHz	0.05	0.5	%
GV	Voltage Gain	f = 1KHz	39.5	40	40.5	dB
SVR	Supply Voltage Rejection	$f = 100Hz$ $R_g = 100Hz$	I0KΩ 35	40		dB
E _N	Total Input Noise	R _g = 10KΩ ('	.) **)	2 3	10	μV μV
η	Efficiency	$R_L = 4\Omega$ f = 1KHz		65		%
I _{sb}	Stand-by Current			200		μA
Ri	Input Resistance	f = 1kHz	70			kΩ
Vi	Input Sensitivity	$f = 1 \text{kHz}; P_0 = 2W; R_L = 4\Omega$		28		mV
fL	Low Frequency Roll Off (–3dB)	$Po=15W; R_L=4\Omega$			30	Hz
f _H	High Frequency Roll Off (–3dB)	$Po = 15W; RL = 4\Omega$	25			kHz
As	Stand-by Attenuation	V _o = 2Vrms	70	90		dB
V _{TH (pin2)}	Stand-by Threshold				1	V

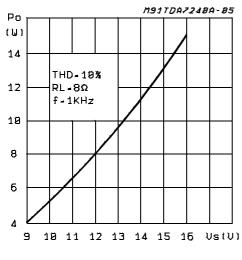
ELECTRICAL CHARACTERISTICS (refer to the circuit of fig. 1, $T_{amb} = 25^{\circ}C$, R_{th} (heatsink) = 4°C/W, $V_s = 14.4V$)

(*) B= Curve A

(**) B = 22Hz to 22 KHz


L77

APPLICATION SUGGESTION


The recommended values of the components are those shown on application circuit of Fig. 1. Different values can be used, the following table can help the designer.

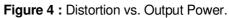

Component	Recommended Value	Purpose	Larger Than	Smaller Than
R1, R2	2.2Ω	Frequency Stability	Danger of High Frequency Oscillation	
C1	1µF	Input DC Decoupling	Higher Turn On and Stand-by Delay	Higher Turn On Pop. Higher Low Frequency Cutoff
C2	22µF	Ripple Rejection	Increase of SVR Increase of the Turn On Delay	Degradation of SVR
C3	22µF	Feedback low Frequency Cutoff		Higher Low Frequency Cutoff
C6, C7	0.22µF	Frequency Stability		Danger of Oscillation
C4	220µF	Supply Filter		Danger of Oscillation
C5	0.1µF	Supply Bypass		Danger of Oscillation

Figure 3 : Output Power vs. Supply Voltage.

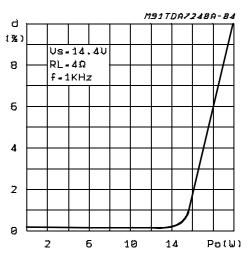


Figure 6 : Distortion vs. Output Power.

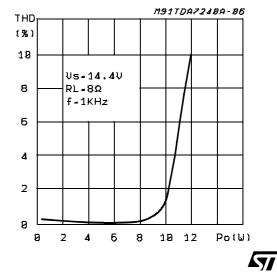
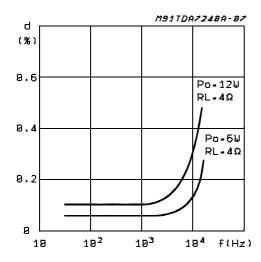
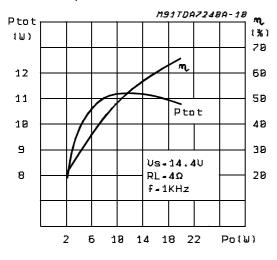
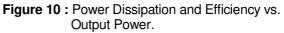
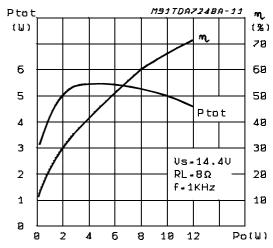
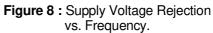


Figure 7 : Distortion vs. Frequency.

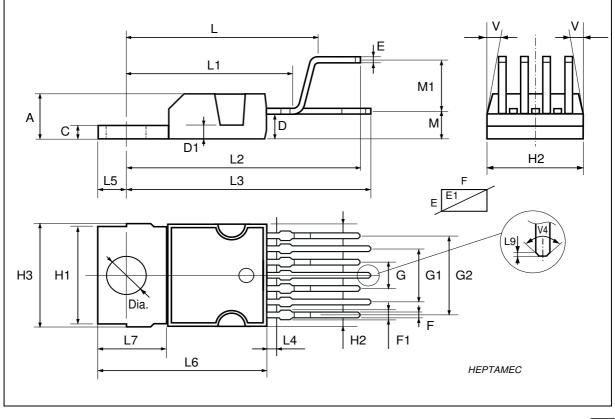





Figure 9 : Power Dissipation and Efficiency vs. Output Power.

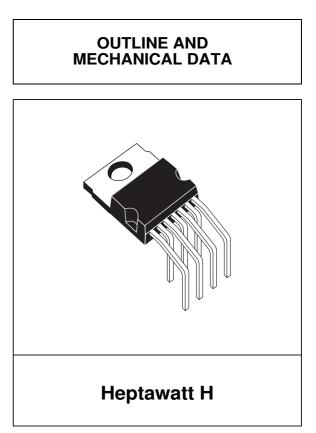


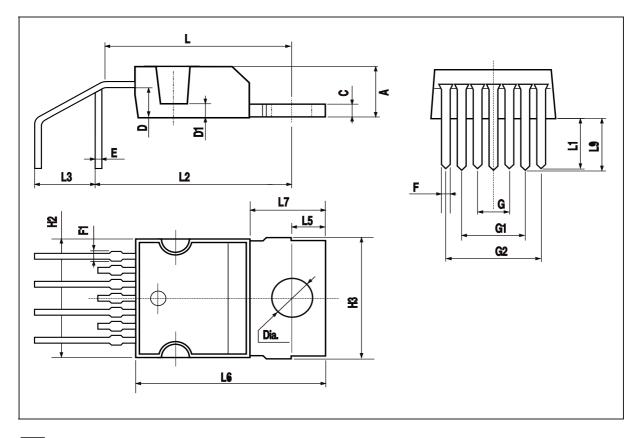
57

M91TDA7248A-88 d (%) 60 Vs-14.4V VR-0.5V Rg=10KΩ 50 C2=22ນE 40 C2-10uF 30 20 19² 10³ ftHz)



TDA7240A


DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
Е	0.35		0.55	0.014		0.022
E1	0.7		0.97	0.028		0.038
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.34	2.54	2.74	0.095	0.100	0.105
G1	4.88	5.08	5.28	0.193	0.200	0.205
G2	7.42	7.62	7.82	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L	16.7	16.9	17.1	0.657	0.668	0.673
L1		14.92			0.587	
L2	21.24	21.54	21.84	0.386	0.848	0.860
L3	22.27	22.52	22.77	0.877	0.891	0.896
L4			1.29			0.051
L5	2.6	2.8	3	0.102	0.110	0.118
L6	15.1	15.5	15.8	0.594	0.610	0.622
L7	6	6.35	6.6	0.236	0.250	0.260
L9		0.2			0.008	
М	2.55	2.8	3.05	0.100	0.110	0.120
M1	4.83	5.08	5.33	0.190	0.200	0.210
V4	40° (typ.)					
Dia	3.65		3.85	0.144		0.152


OUTLINE AND Machine And

L77

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
Е	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		14.2			0.559	
L1		4.4			0.173	
L2		15.8			0.622	
L3		5.1			0.201	
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
L9		4.44			0.175	
Dia	3.65		3.85	0.144		0.152

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

HEPTAWATT™ is a Trademark of SGS-THOMSON Microelectronics

 $\ensuremath{\textcircled{C}}$ 1998 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com