

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



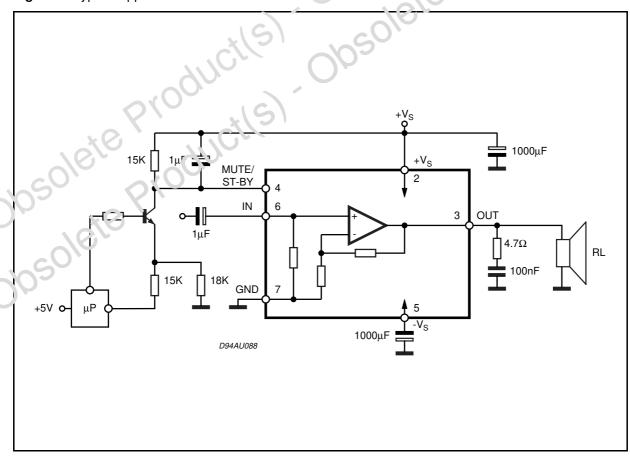






### 25W MONO AMPLIFIER WITH MUTE/ST-BY

- WIDE SUPPLY VOLTAGE RANGE (UP TO 50V ABS MAX.)
- SPLIT SUPPLY
- HIGH OUTPUT POWER: 25W @ THD =10%, R<sub>L</sub> = 8Ω, V<sub>S</sub> = ±20V
- NO POP AT TURN-ON/OFF
- MUTE (POP FREE)
- STAND-BY FEATURE (LOW IQ)
- FEW EXTERNAL COMPONENTS
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

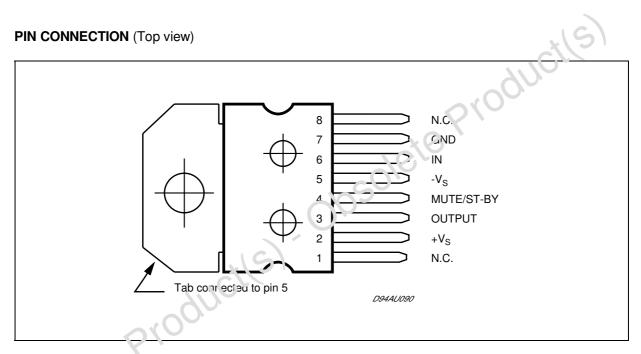



signed for high quality cound application in mono in victassis.

### **DESCRIPTION**

The TDA7261 is class AB Audio power amplifier assembled in the Multiwatt package, specially de-

Figure 1: Typical Application Circuit




September 2003

### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                                  | Value       | Unit |
|------------------|--------------------------------------------|-------------|------|
| $V_S$            | DC Supply Voltage                          | 50          | V    |
| lo               | Output Peak Current (internally limited)   | 4.5         | Α    |
| P <sub>tot</sub> | Power Dissipation T <sub>case</sub> = 70°C | 30          | W    |
| $T_{stg}, T_j$   | Storage and Junction Temperature           | -40 to +150 | °C   |

### PIN CONNECTION (Top view)



### THERMAL DATA

| Eyinbol                | Description                      |     |     | Unit |
|------------------------|----------------------------------|-----|-----|------|
| R <sub>th j-case</sub> | Thermal Resistance Junction-case | Max | 2.5 | °C/W |

2/9

## **ELECTRICAL CHARACTERISTICS** (Refer to the test circuit, $V_S \pm 20V$ ; $R_L = 8\Omega$ ; $R_s = 50\Omega$ ; f = 1 KHz; $T_{amb} = 25^{\circ}\text{C}$ , unless otherwise specified.)

| Symbol                       | Parameter                                  | Test Condition                                                              | Min.       | Тур.       | Max.          | Unit     |  |
|------------------------------|--------------------------------------------|-----------------------------------------------------------------------------|------------|------------|---------------|----------|--|
| Vs                           | Supply Range                               |                                                                             | <u>+</u> 5 |            | <u>+</u> 22.5 | V        |  |
| Ιq                           | Total Quiescent Current                    |                                                                             |            | 30         |               | mA       |  |
| Po                           | Music Output Power (*)                     | THD = 10%; R <sub>L</sub> = 8Ω; $V_S \pm 28.5V$ ;                           |            | 32         |               | W        |  |
| Po                           | Output Power                               | $THD = 10\%$ $R_L = 8\Omega;$ $V_S \pm 16V; R_L = 4\Omega$                  | 20         | 25<br>25   |               | W<br>W   |  |
|                              |                                            | THD = 1% $R_L = 8\Omega$ ; $V_{S \pm} 16V$ ; $R_L = 4\Omega$                |            | 20<br>20   |               | W<br>V   |  |
| THD                          | Total Harmonic Distortion                  | $R_L = 8\Omega$ ; $P_O = 1W$ ; $f = 1KHz$                                   |            | 0.02       |               | %        |  |
|                              |                                            | $R_L = 8\Omega$ ;<br>$P_O = 0.1$ to 15W;<br>f = 100Hz to 15KHz              |            | 9/7        | 0.5           | %        |  |
|                              |                                            | $R_L = 4\Omega$ ; $P_O = 1W$ ; $f = 1KHz$                                   | 201        | ე.03       |               | %        |  |
|                              |                                            | $R_L = 4\Omega$ ; $V_S \pm 16V$ ; $P_O = 0.1$ to 12W; $f = 100$ Hz to 15KHz |            |            | 1             | %        |  |
| SR                           | Slew Rate                                  |                                                                             |            | 10         |               | V/μs     |  |
| G <sub>V</sub>               | Closed Loop Voltage Gain                   | 60.                                                                         | 29         | 30         | 31            | dB       |  |
| $\Delta G_V$                 | Voltage Gain Matching                      |                                                                             |            | 0.2        |               | dB       |  |
| e <sub>N</sub>               | Total Input Noise                          | A Curv ?<br>f = 20Hz to 22KHz                                               |            | 2.5<br>3.5 | 8             | μV<br>μV |  |
| $R_i$                        | Input Resistance                           |                                                                             | 15         | 20         |               | ΚΩ       |  |
| SVR                          | Supply Voltage Rejection                   | fr = 100Hz; Vripple = 0.5VRMS                                               |            | 60         |               | dB       |  |
| Tj                           | Thermal Shut-down<br>Junction Temperal 173 |                                                                             |            | 145        |               | °C       |  |
| MUTE FUNCTION [ref: +Vs]     |                                            |                                                                             |            |            |               |          |  |
| VT <sub>MUTE</sub>           | Mute / โลง โหวรhold                        |                                                                             | -7         | -6         | -5            | V        |  |
| A <sub>M</sub>               | Mute Attenuation                           |                                                                             | 60         | 90         |               | dB       |  |
| STAND-BY FUNCTION [ref: +Vs] |                                            |                                                                             |            |            |               |          |  |
| VT <sub>ST-B</sub> ′         | Stand-by / Mute Threshold                  |                                                                             | -3.5       | -2.5       | -1.5          | V        |  |
| Ast -BY                      | Stand-by Attenuation                       |                                                                             |            | 110        |               | dB       |  |
| Ic S7-BY                     | Quiescent Current @ Stand-by               |                                                                             |            | 3          |               | mA       |  |

Note: (\*) FULL POWER up to.  $V_S = \pm 22.5V$  with  $R_L = 8\Omega$  and  $V_S = \pm 16V$  with  $R_L = 4\Omega$  MUSIC POWER is the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a sinusoidal input signal of frequency 1KHz.

### **APPLICATIONS SUGGESTION**

(Demo Board Schematic)

The recommended values of the external compo-

nents are those shown on the demo board schematic. Different values can be used: the following table can help the designer.

| COMPONENTS | RECOMMENDED<br>VALUE | PURPOSE                     | LARGER THAN RECOMMENDED VALUE         | SMALLER THAN RECOMMENDED VALUE        |
|------------|----------------------|-----------------------------|---------------------------------------|---------------------------------------|
| R1         | 10ΚΩ                 | Mute Circuit                | Increase of Dz<br>Biasing Current     |                                       |
| R2         | 15ΚΩ                 | Mute Circuit                | V <sub>pin</sub> # 4 Shifted Downward | V <sub>pin</sub> # 4 Shifted Upward   |
| R3         | 18ΚΩ                 | Mute Circuit                | V <sub>pin</sub> # 4 Shifted Upward   | V <sub>pin</sub> # 4 Shifted Downward |
| R4         | 15ΚΩ                 | Mute Circuit                | V <sub>pin</sub> # 4 Shifted Upward   | V <sub>pin</sub> # 4 Shifted Downward |
| R5         | 4.7Ω                 | Frequency Stability         | Danger of Oscillations                | Danger of Oscillations                |
| C1         | 1μF                  | Input DC<br>Decoupling      |                                       | Higher Love Frequency                 |
| C2         | 1μF                  | St-By/Mute Time<br>Constant | Larger On/Off Time                    | วักaller On/Of Time                   |
| C3, C5     | 1000μF               | Supply Voltage<br>Bypass    | 10,10                                 | Danger of Oscillations                |
| C4, C6     | 0.1μF                | Supply Voltage<br>Bypass    | 5010                                  | Danger of Oscillations                |
| <b>C</b> 7 | 0.1μF                | Frequency Stab lity         | O                                     |                                       |
| Dz         | 5.1V                 | Mute Circuit                |                                       |                                       |
| Q1         | BC107                | Multe Circuit               |                                       |                                       |
| solei      | BC107                | C                           |                                       |                                       |

### **MUTE, STAND-BY TRUTH TABLE**

| SW1 | SW2 |          |
|-----|-----|----------|
| Α   | Α   | STAND-BY |
| Α   | В   | STAND-BY |
| В   | В   | MUTE     |
| В   | Α   | PLAY     |

Figure 2: Demo Board Schematic

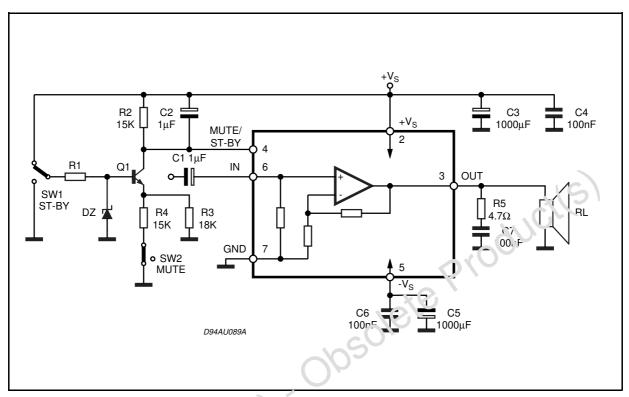
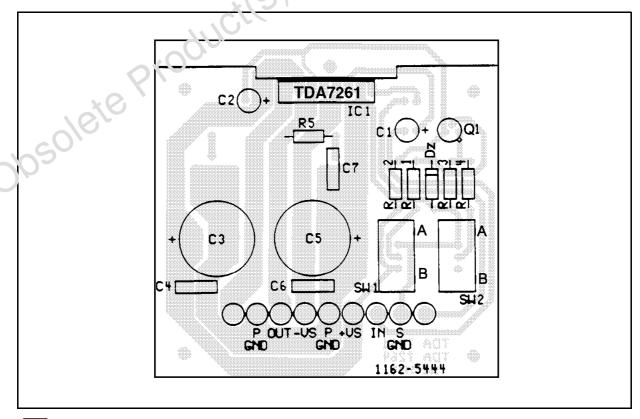




Figure 3: P.C. Board And Component Layout of the Demo Board Schematic (1:1 Scale)



4

Figure 4: Quiescent Current vs. Supply Voltage

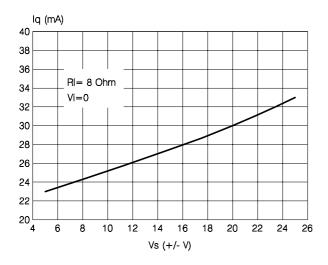



Figure 6: Distortion vs. Output Power

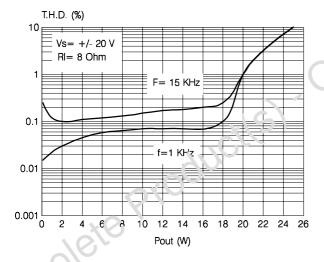



Figure 8: Attenuation & Total Quiescent Current vs. Vpin4 Voltage

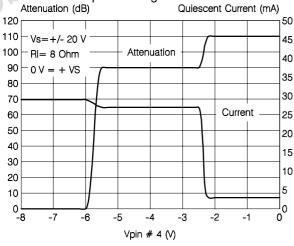



Figure 5: Output Power vs Supply Voltage

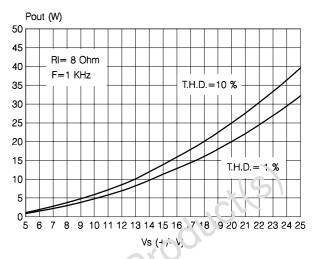



Figure 7: Supply Voltage Rejection vs. Fequency

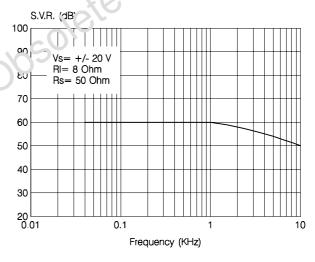
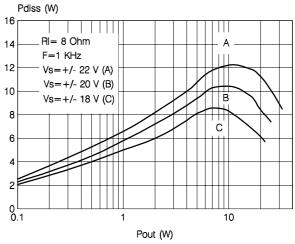
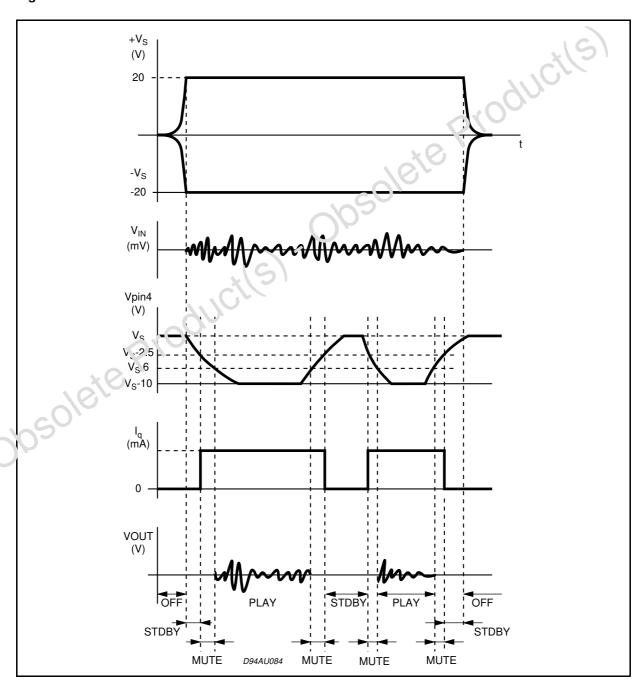




Figure 9: Power Dissipation vs. Output Power

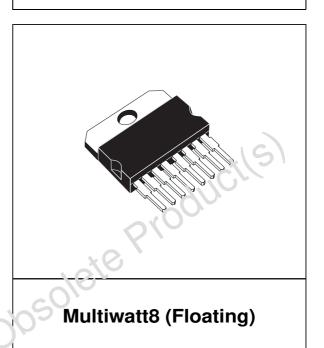


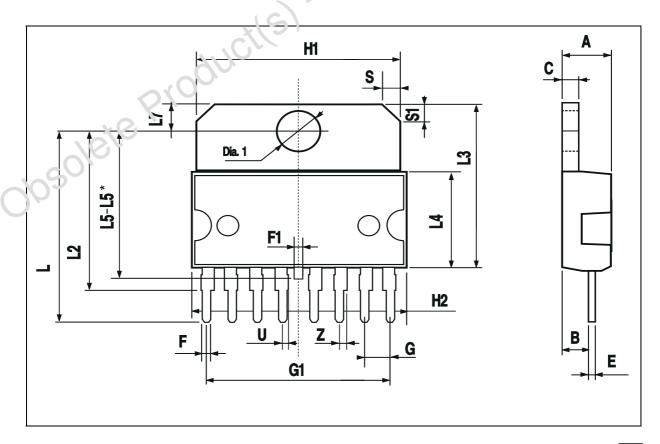

6/9

### **MUTE STAND-BY FUNCTION**

The pin 4 (MUTE/STAND-BY) controls the amplifier status by two different theresholds, referred to  $+V_S$ .

- When  $V_{pin4}$  higher than =  $+V_S$  2.5V the amplifier is in Stand-by mode and the final stage generators are off.
- When  $V_{\text{pin4}}$  is between +V<sub>S</sub> 2.5V and +V<sub>S</sub> 6V the final stage current generators are switched on and the amplifier is in mute mode.
- When  $V_{\text{pin4}}$  is lower than  $+V_{\text{S}}$  6V the amplifier is play mode.


Figure 10




| DIM.      | mm             |       |                | inch         |       |              |  |
|-----------|----------------|-------|----------------|--------------|-------|--------------|--|
| DIIVI.    | MIN.           | TYP.  | MAX.           | MIN.         | TYP.  | MAX.         |  |
| Α         |                |       | 5              |              |       | 0.197        |  |
| В         |                |       | 2.65           |              |       | 0.104        |  |
| С         |                |       | 1.6            |              |       | 0.063        |  |
| E         | 0.49           |       | 0.55           | 0.019        |       | 0.022        |  |
| F         | 0.78           |       | 0.85           | 0.030        |       | 0.033        |  |
| F1        | 0.68           |       | 0.75           | 0.027        |       | 0.029        |  |
| G         | 2.40           | 2.54  | 2.68           | 0.094        | 0.10  | 0.105        |  |
| G1        | 17.64          | 17.78 | 17.92          | 0.69         | 0.70  | 0.71         |  |
| H1        | 19.6           |       |                | 0.772        |       |              |  |
| H2        |                |       | 20.2           |              |       | 0.795        |  |
| L         | 20.35          |       | 20.65          | 0.80         |       | 0.81         |  |
| L2        | 17.05          | 17.20 | 17.35          | 0.67         | 0.68  | 0.68         |  |
| L3        | 17.25          | 17.5  | 17.75          | 0.679        | 0.689 | 0.699        |  |
| L4        | 10.3           | 10.7  | 10.9           | 0.406        | 0.421 | 0.429        |  |
| L5<br>L5* | 15.45<br>15.05 |       | 15.75<br>15.35 | 0.61<br>0.59 |       | 0.62<br>0.60 |  |
| L7        | 2.65           |       | 2.9            | 0.104        |       | 0.114        |  |
| S         | 1.9            |       | 2.6            | 0.075        |       | 0.102        |  |
| S1        | 1.9            |       | 2.6            | 0.075        |       | 0.102        |  |
| U         | 0.40           |       | 0.55           | 0.015        |       | 0.022        |  |
| Z         | 0.70           |       | 0.85           | 0.028        |       | 0.034        |  |
| Dia1      | 3.65           |       | 3.85           | 0.144        |       | 0.152        |  |

L5 = with wedged frame std. L5\* = with wedged frame anchor holes.

# OUTLINE AND MECHANICAL DATA





47/



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

### STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

