

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

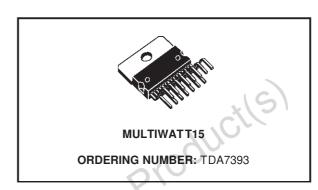
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

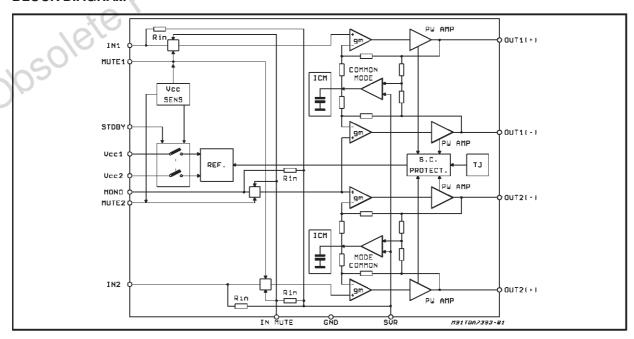


2 x 32W DUAL BRIDGE CAR RADIO AMPLIFIER

- HIGH OUTPUT POWER CAPABILITY:
 - 2 x 35W max./4 Ω
 - 2 x 32W EIAJ/4 Ω
 - 2 x 22W typ./ 4Ω @ 14.4V, 1KHz, 10%
 - $2 \times 19W \text{ typ.}/4\Omega$ @ 13.2V, 1KHz, 10%
 - 2 x 28W typ./2Ω @ 14.4V, 1KHz, 10%
 - 2 x 25W typ./2Ω @ 13.2V, 1KHz, 10%
- LOW DISTORTION
- LOW OUTPUT NOISE
- ST-BY FUNCTION
- MUTE FUNCTION
- AUTO-MUTE AT MIN. SUPPLY VOLTAGE DETECTION
- LOW EXTERNAL COMPONENT COUNT
 - INTERNALLY FIXED GAIN (32dB)
 - NO EXTERNAL COMPENSATION
 - NO BOOTSTRAP CAPACITORS
- ADDITIONAL MONO INPUT

PROTECTIONS:

- OUTPUT AC/DC SHORT CIRCUIT TO GND AND TO V_S
- VERY INDUCTIVE LOADS
- OVERRATING CHIP TEMPERATURE WITH SOFT THERMAL LIMITER

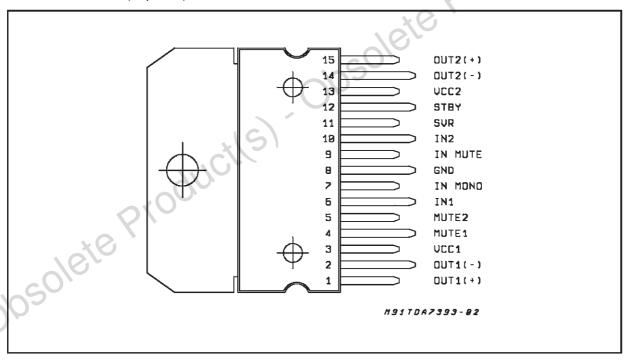


- LOAD DUMP VOLTAGE
- FORTUITOUS OPEN GND
- REVERSE BATTERY
- ESD PROTECTION

DESCRIPTION

The TDA7393 is a new technology class AB Audio Power Amplifier in Multiwatt15 package designed for high end car radio applications. Thanks to the fully complementary PNP/NPN output configuration the high power performances of the TDA7393 are obtained without bootstrap capacitors. The extremely reduced components count

BLOCK DIAGRAM



October 1998 1/9

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit		
V_{CC}	Operating Supply Voltage	18	V		
V _{CC (DC)}	DC Supply Voltage	28	V		
$V_{CC\ (pk)}$	Peak Supply Voltage (t = 50ms)	50	V		
lo	Output Peak Current: Repetitive (Duty Cycle 10% at f = 10Hz) Non Repetitive (t = 100µs)	4.5 5.5	A A		
P _{tot}	Power dissipation, Tcase = 75°C (see derating curve)	50	W		
T _i	Junction Temperature	150	°C		
T _{op}	Operating Ambient Temperature	- 40 to 85	°C		
T _{stg}	Storage Temperature	- 55 to 150	°C		
allows very compact sets.		ducil	51		
PIN CONNECTION (Top view)					
		0,			

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction to Case Max.	1.5	°C/W

ELECTRICAL CHARACTERISTICS ($V_S = 13.2V$; f = 1KHz; $R_g = 600\Omega$; $R_L = 4\Omega$; $T_{amb} = 25^{\circ}C$; Refer to the application circuit, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
I _{q1}	Quiescent Current			90	180	mA
V_{OS}	Output Offset Voltage				150	mV
Gv	Voltage Gain		30.5	32	33.5	dB
Po	Output Power	$ \begin{array}{l} THD = 10\%; \ V_S = 14.4V \\ THD = 10\% \\ THD = 1\% \\ THD = 10\%; \ R_L = 2\Omega \\ THD = 10\%; \ V_S = 14.4V; \\ R_L = 2\Omega \end{array} $	17	22 19 16 25		W W W W
P _{o max}	Max. Output Power	EIAJ RULES; V _S = 13.7V		30		W
THD	Distortion	P _o = 0.1 to 8W		0.08	0.3	%
e _{No}	Output Noise	Bw = 20Hz to 20KHz			0.3	mVrms
SVR	Supply Voltage Rejection	f = 100Hz (stereo)		60	O.	dB
fL	Low Cut-Off Frequency			10	,	Hz
fH	High Cut-Off Frequency		21	300		KHz
Ri	Input Impedance		10	15	20	ΚΩ
C_{T}	Cross Talk	f = 1KHz	50	65		dB
I _{SB}	St-By Current Consumption	10.1			100	μΑ
V _{SB out}	St-By OUT Threshold Voltage	Amp. ON	3.5			V
V _{SB IN}	St-By IN Threshold Voltage	Amp. OFF			1.5	V
V_{SB}	Supply Dependent St-By Threshold	St-By = H, V _S reducing/increasing		7.5	8.3	V
A_M	Mute Attenuation	$V_O = 1 Vrms$		75		dB
$V_{M out}$	Mute OUT Threshold Voltage	Amp. Play	3.5			V
$V_{M in}$	Mute IN Threshold Voltage	Amp. Mute			1.5	V
V_{M}	Supply Dependent Mute Threshold	Mute = IN, V _S reducing/increasing		8.5	9.3	V
I _{m (L)}	Muting Pin Current	V _{MUTE} = 1.5V (Sourced Current)	6	10	14	μΑ
I _{m (H)}	Muting Pin Current	VMUTE = 3.5V (Sourced Current)	6	10	14	μА

Figure 1: Quiescent Current vs. Supply Voltage

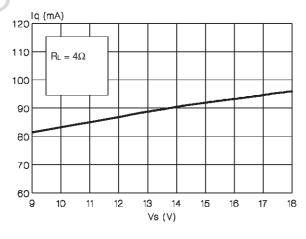


Figure 2: Output Power vs. Supply Voltage

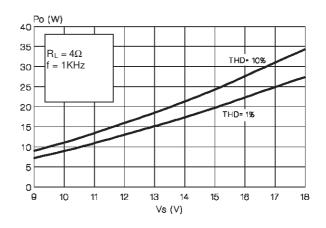


Figure 3: Output Power vs Supply Voltage

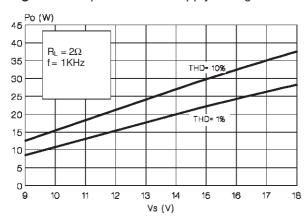


Figure 4: EIAJ Power vs. Supply Voltage

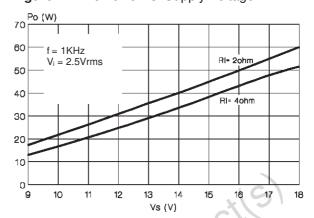


Figure 5: Cross-Talk vs. Frequency

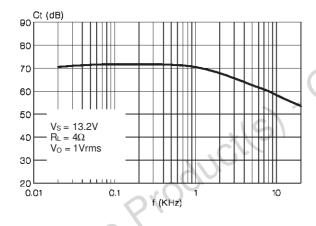


Figure 6: SVR vs. Frequency

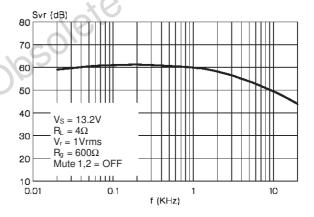


Figure 7: Distortion vs. Frequency

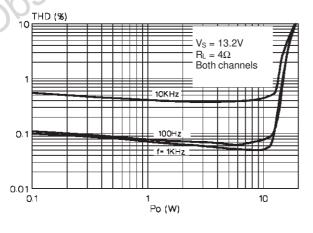


Figure 8: Distortion vs. Frequency

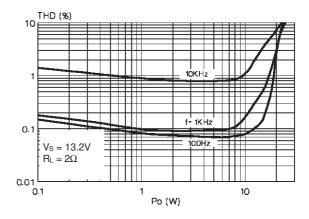


Figure 9: Block Diagram of Mute Circuit

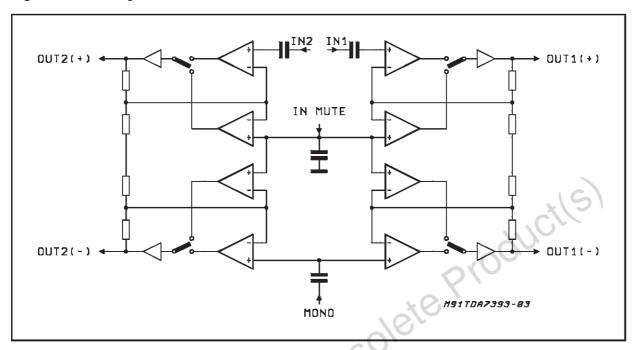


Figure 10: Explanatory Waveforms Of Mute Circuit

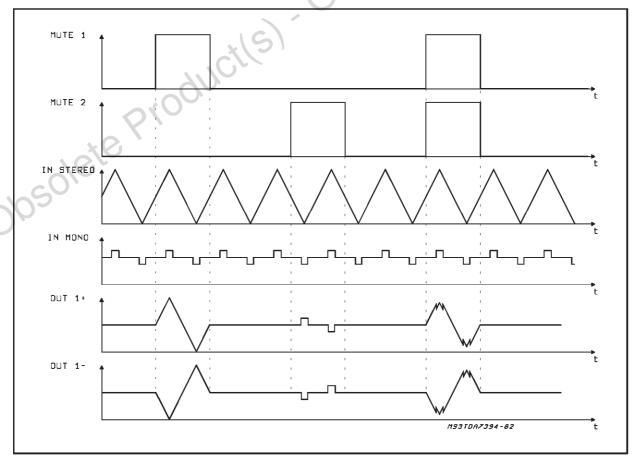


Figure 11: Application Circuit

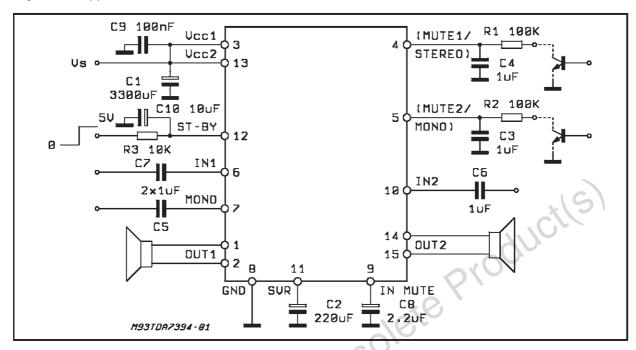
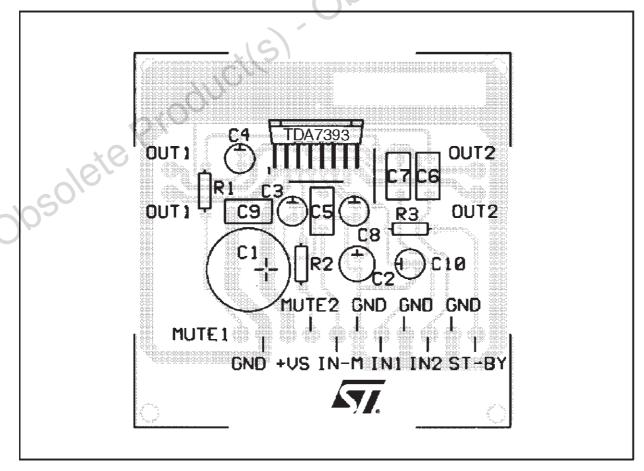
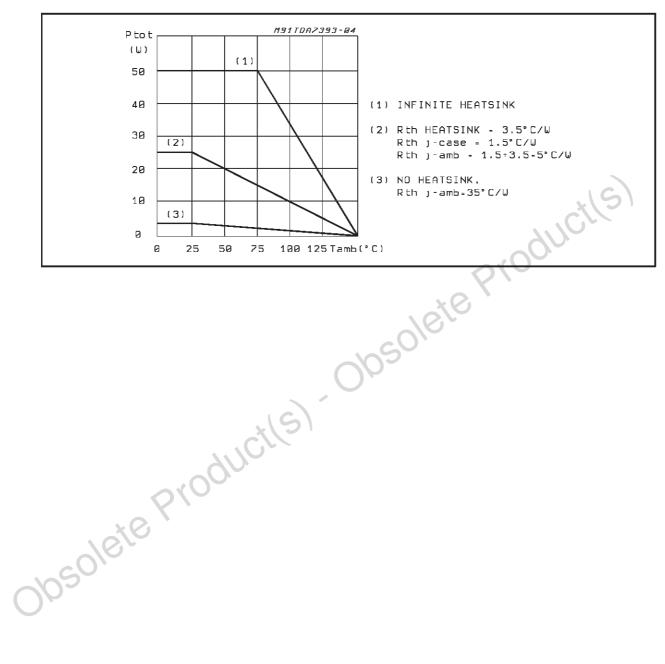
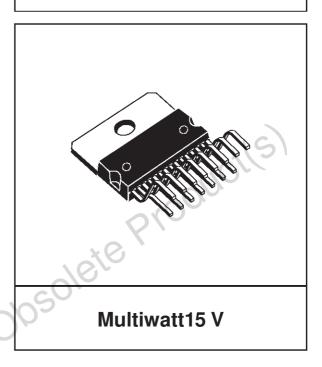
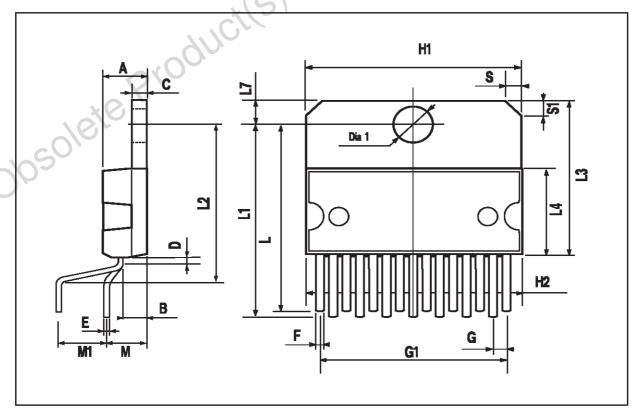




Figure 12: P.C. Board and Component Layout of the fig. 11 (1:1 scale)

5





MULTIWATT15 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
E	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.870	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.63	5.08	5.53	0.182	0.200	0.218
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STM icroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent of STM icroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STM icroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STM icroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved

MULTIWATT® is a Registered Trademark of the STMicroelectronics

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

4