

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LOW COST DIGITALLY CONTROLLED AUDIO PROCESSOR

1 FEATURES

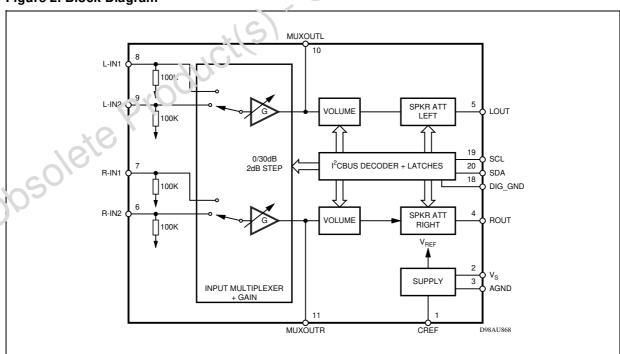
- INPUT MULTIPLEXER
 - 2 STEREO INPUTS
 - SELECTABLE INPUT GAIN FOR OPTIMAL ADAPTATION TO DIFFERENT SOURCES
- ONE STEREO OUTPUT
- VOLUME CONTROL IN 1.0dB STEPS
- TWO SPEAKER ATTENUATORS:
 - TWO INDEPENDENT SPEAKER CONTROL IN 1.0dB STEPS FOR BALANCE FACILITY
 - INDEPENDENT MUTE FUNCTION
- ALL FUNCTION ARE PROGRAMMABLE VIA SERIAL BUS

2 DESCRIPTION

The TDA7449L is a volume control and balance (Left/Right) processor for quality audio applications in TV systems.

Figure 1. Package

Table 1. Order Codes


Part Number	Package
TDA7449L	DIP20

Selectable input gain is provided. Control of all the functions is accomplished by senal bus.

The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers.

Thanks to included BIPOLAR/CMOS Technology, Low Distortion, Low Noise and DC stepping are obtained.

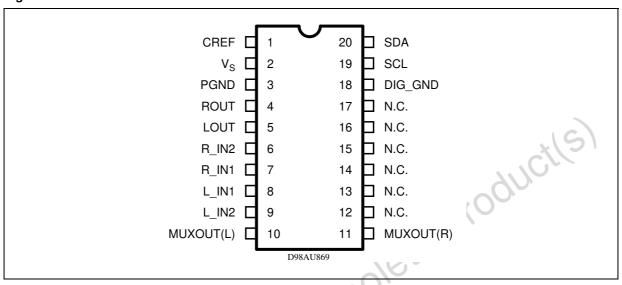

Figure 2. Block Diagram

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.5	V
T _{amb}	Operating Ambient Temperature	0 to 70	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

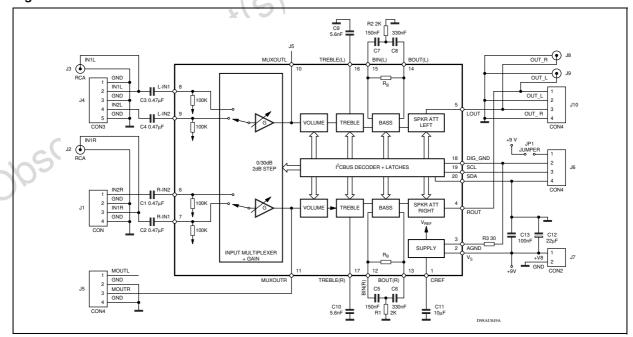
Figure 3. Pin Connection

Table 3. Thermal Data

Ī	Symbol	Parameter	Value	Unit
Ī	R _{th j-pin}	Thermal Resistance Junction- pins	150	°C/W

Table 4. Quick Reference Data

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	6	9	10.2	V
V _{CL}	Max Input Signal Handling	2			V _{RMS}
THD	Total Harmonic Distortion V = 0.1Vrms f = 1KHz		0.01	0.1	%
S/N	Signal to Noise Ratio V _{out} = 1Vrms (mode = OFF)		106		dB
Sc	Channel Separation f = 1KHz		90		dB
	Input Gain (2dB step)	0		30	dB
	Volume Control (1dB step)	-47		0	dB
	Balance Control 1dB step	-79		0	dB
	Mute Attenuation		100		dB


Table 5. Electrical Characteristcs (refer to the test circuit T_{amb} = 25°C, V_S = 9V, R_L = 10K Ω , R_G = 600 Ω , all controls flat (G = 0dB), unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY		1		ı	1	
Vs	Supply Voltage		6	9	10.2	V
Is	Supply Current			7		mA
SVR	Ripple Rejection		60	90		dB
INPUT STAGE		1		I	1	1
R _{IN}	Input Resistance			100		ΚΩ
V_{CL}	Clipping Level	THD = 0.3%	2	2.5		Vrms
S _{IN}	Input Separation	The selected input is grounded through a 2.2μ capacitor	80	100		dB
G _{inmin}	Minimum Input Gain		-1	0	71/2	dB
Ginman	Maximum Input Gain			30	0,	dB
G _{step}	Step Resolution		- 1	2		dB
VOLUME CON	TROL		61		1	
CRANGE	Control Range	3/0	45	47	49	dB
A _{VMAX}	Max. Attenuation	-0/6	45	47	49	dB
A _{STEP}	Step Resolution	0050	0.5	1	1.5	dB
E _A	Attenuation Set Error	$A_V = 0$ to -24dB	-1.0	0	1.0	dB
	16	A _V = -24 to -47dB	-1.5	0	1.5	dB
E _T	Tracking Error	A _V = 0 to -24dB		0	1	dB
	AUIO	A _V = -24 to -47dB		0	2	dB
V _{DC}	DC Step	adjacent attenuation steps		0	3	mV
	X	from 0dB to A _V max		0.5		mV
A _{mute}	Mute Attenuation		80	100		dB
SPEAKER ATT	TENUATORS	1		I	1	1
CRANGE	Control Range			76		dB
S _{STEP}	Step Resolution		0.5	1	1.5	dB
E _A	Attenuation Set Error	A _V = 0 to -20dB	-1.5	0	1.5	dB
		A _V = -20 to -56dB	-2	0	2	dB
V _{DC}	DC Step	adjacent attenuation steps		0	3	mV
A _{mute}	Mute Attenuation		80	100		dB
			1	1	1	

Table 5. Electrical Characteristcs (continued)

AUDIO OUTP	UTS					
V _{CLIP}	Clipping Level	d = 0.3%	2.1	2.6		V _{RMS}
RL	Output Load Resistance		2			ΚΩ
Ro	Output Impedance		10	40	70	W
V_{DC}	DC Voltage Level			3.8		V
GENERAL	1			I	I	
E _{NO}	Output Noise	All gains = 0dB; BW = 20Hz to 20KHz flat		5	15	μV
Et	Total Tracking Error	A _V = 0 to -24dB		0	1	dB
		A _V = -24 to -47dB		0	2	dB
S/N	Signal to Noise Ratio	All gains 0dB; V _O = 1V _{RMS} ;		106	10	dB
S _C	Channel Separation Left/Right		80	100		dB
d	Distortion	$A_V = 0; V_I = 1 V_{RMS};$		0.01	0.08	%
BUS INPUT			OY	2	l	
V _{IL}	Input Low Voltage	. 0	1		1	V
V _{IH}	Input High Voltage	10:10	3			V
I _{IN}	Input Current	V _{IN} = 0.4V	-5		5	μΑ
V _O	Output Voltage SDA Acknowledge	I _O = 1.6mA		0.4	0.8	V

Figure 4. Test Circuit

3 APLICATION SUGGESTIONS

The first and the last stages are volume control blocks. The control range is 0 to -47dB (mute) for the first one, 0 to -79dB (mute) for the last one. Both of them have 1dB step resolution.

The very high resolution allows the implementation of systems free from any noisy acoustical effect. The TDA7449L audioprocessor provides 2 bands tones control.

3.1 CREF

The suggested $10\mu F$ reference capacitor (CREF) value can be reduced to $4.7\mu F$ if the application requires faster power ON.

Figure 5. THD vs. frequency

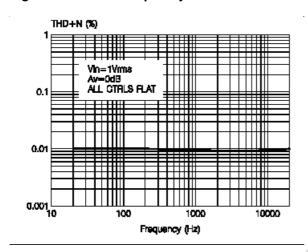


Figure 7. Channel separation vs. frequency

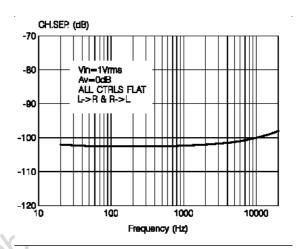
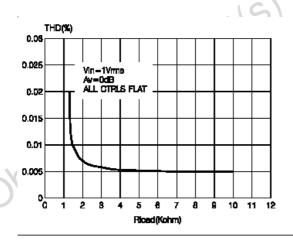



Figure 6. THD vs. RLOAD

4 I²C BUS INTERFACE

Data transmission from microprocessor to the TDA7449L and vice versa takes place through the 2 wires I^2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

4.1 Data Validity

As shown in fig. 8, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

4.2 Start and Stop Conditions

As shown in fig.9 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

4.3 Byte Format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

4.4 Acknowledge

The master (μ P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 10). The peripheral (audio processor) that acknowledges has to pull-down (LOW) the SDA line during this clock pulse.

The audio processor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

4.5 Transmission without Acknowledge

Avoiding to detect the acknowledge of the audio processor, the μP can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworking.

Figure 8. Data Validity on the I²CBUS

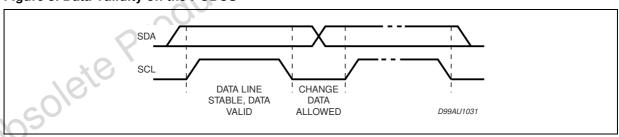


Figure 9. Timing Diagram of I²CBUS

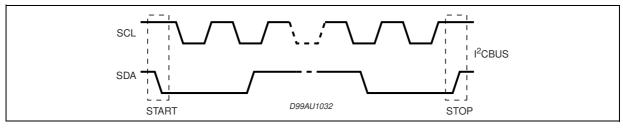
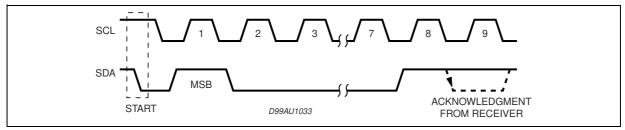
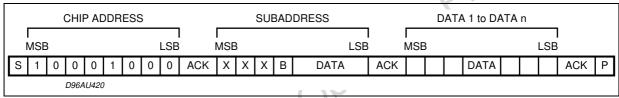



Figure 10. Acknowledge on the I²CBUS

5 SOFTWARE SPECIFICATION

5.1 Interface Protocol


The interface protocol comprises:

- A start condition (S)
- A chip address byte, containing the TDA7449L address

roducils

- A subaddress bytes
- A sequence of data (N byte + acknowledge)
- A stop condition (P)

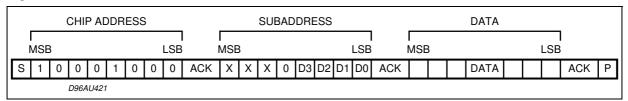
Figure 11.

ACK = Acknowledge

S = Start

P = Stop

A = Address

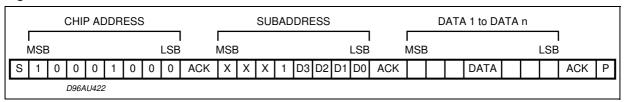

B = Auto Increment

6 EXAMPLES

6.1 No Incremental Bus

The TDA7449L receives a start condition, the correct chip address, a subaddress with the B = 0 (no incremental bus), N-data (all these data concern the subaddress selected), a stop condition.

Figure 12.



6.2 Incremental Bus

The TDA7449L receive a start conditions, the correct chip address, a subaddress with the B = 1 incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas SUBADDRESS from "XXX1000" to "XXX1111" of DATA are ignored.

The DATA 1 concern the subaddress sent, and the DATA 2 concern the subaddress sent plus one in the loop etc, and at the end it receivers the stop condition.

Figure 13.

Table 6. POWER ON RESET CONDITION

INPUT SELECTION	IN2
INPUT GAIN	28dB
VOLUME	MUTE
SPEAKER	MUTE
7 DATA BYTES Address = 88 HEX (ADDR:OPEN).	obsolete
Table 7 FUNCTION SELECTION: First byte (sub	addraga)

DATA BYTES

Table 7. FUNCTION SELECTION: First byte (subaddress)

MSB				16			LSB	SUBADDRESS
D7	D6	D5	D4	D3	D2	D1	D0	OODADDIILOO
Х	Х	Х	В	0	0	0	0	INPUT SELECT
Х	Х	X	В	0	0	0	1	INPUT GAIN
Х	Х	Х	В	0	0	1	0	VOLUME
X	X	Х	В	0	0	1	1	NOT USED
X	Х	Х	В	0	1	0	0	BASS USED
O-X	Х	Х	В	0	1	0	1	TREBLE USED
Х	Х	Х	В	0	1	1	0	SPEAKER ATTENUATE "R"
Х	Х	Х	В	0	1	1	1	SPEAKER ATTENUATE "L"

B = 1: INCREMENTAL BUS ACTIVE

In Incremental Bus Mode, the three "not used" functions must be addressed in any case. For example to refresh "Volume = 0dB" and Speaker_R = -40dB", the following bytes must be sent:

B = 0: NO INCREMENTAL BUS

X = DON'T CARE

Table 8.

SUBADDRESS	XXX10010
VOLUME DATA	X0000000
NOT USED 1 DATA	XXXX1111
NOT USED 2 DATA	XXXX1111
NOT USED 3 DATA	XXXX1111
SPEAKER_R DATA	X0000010

Table 9. INPUT SELECTION

MSB				INPUT MULTIPLEXER				
D7	D6	D5	D4	D3	D2	D1	D0	INFO! MOLTIFLEXER
Х	Х	Х	Х	Х	Х	0	0	NOT ALLOWED
Х	Х	Х	Х	Х	Х	0	1	NOT ALLOWED
Х	Х	Х	Х	Х	Х	1	0	IN2
Х	Х	Х	Х	Х	Х	1	1	IN1

Table 10. INPUT GAIN SELECTION

MSB						101	LSB	INPUT GAIN
D7	D6	D5	D4	D3	D2	D1	D0	2dB STEPS
				0	0	0	0	0dB
				0	0	0	1	2dB
				0	0	1	0	4dB
			(1)	0	0	1	1	6dB
				0	1	0	0	8dB
		~0),	0	1	0	1	10dB
		5/-		0	1	1	0	12dB
	3%			0	1	1	1	14dB
	S			1	0	0	0	16dB
300				1	0	0	1	18dB
O_{\bullet}				1	0	1	0	20dB
				1	0	1	1	22dB
				1	1	0	0	24dB
				1	1	0	1	26dB
				1	1	1	0	28dB
				1	1	1	1	30dB

GAIN = 0 to 30dB

Table 11. VOLUME SELECTION

MSB							LSB	VOLUME
D7	D6	D5	D4	D3	D2	D1	D0	1dB STEPS
					0	0	0	0dB
					0	0	1	-1dB
					0	1	0	-2dB
					0	1	1	-3dB
					1	0	0	-4dB
					1	0	1	-5dB
					1	1	0	-6dB
					1	1	1	-7dB
	0	0	0	0				0dB
	0	0	0	1				-8dB
	0	0	1	0				-16dB
	0	0	1	1				-24dB
	0	1	0	0				-32dB
	0	1	0	1				-40dB
	Х	1	1	1	Х	Х	Х	MUTE

VOLUME = 0 to 47dB/MUTE

Table 12. SPEAKER ATTENUATE SELECTION

MSB							LSB	SPEAKER ATTENUATION
D7	D6	D5	D4	D3	D2	D1	D0	1dB
					0	0	0	0dB
					0	0	1	-1dB
					0	1	0	-2dB
				15	0	1	1	-3dB
				11.	1	0	0	-4dB
			AD.		1	0	1	-5dB
			10		1	1	0	-6dB
		01			1	1	1	-7dB
	0	0	0	0				0dB
	0	0	0	1				-8dB
-6	0	0	1	0				-16dB
0	0	0	1	1				-24dB
,	0	1	0	0				-32dB
	0	1	0	1				-40dB
	0	1	1	0				-48dB
	0	1	1	1				-56dB
	1	0	0	0				-64dB
	1	0	0	1				-72dB
	1	1	1	1	Х	Х	Х	MUTE

SPEAKER ATTENUATION = 0 to -79dB/MUTE

Figure 14. PIN :1

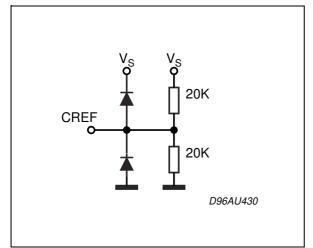


Figure 17. PINS: 10, 11

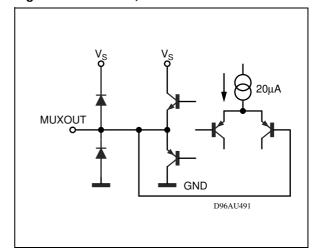


Figure 15. PINS: 4, 5

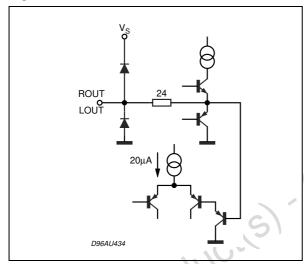


Figure 18. PIN: 19,

Figure 16. PINS: 6, 7, 8, 9

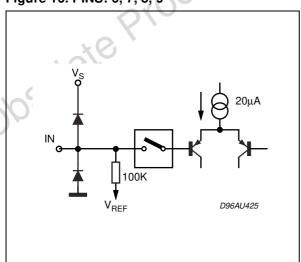


Figure 19. PIN: 20

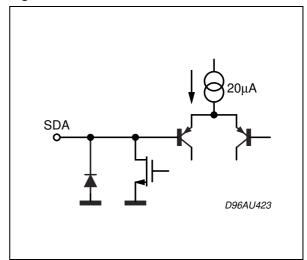
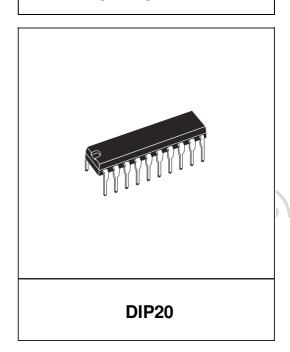
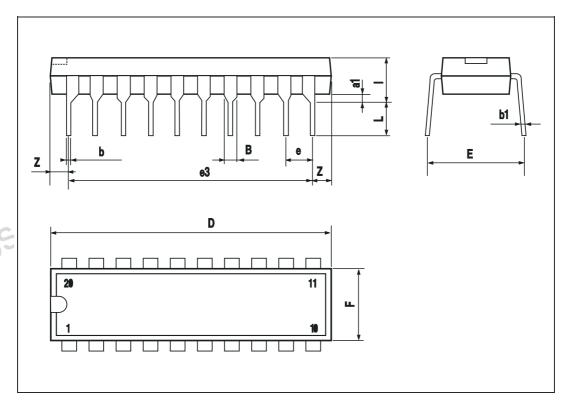




Figure 20. DIP20 Mechanical Data & Package Dimensions

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
Е		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
ı			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

OUTLINE AND MECHANICAL DATA

Table 13. Revision History

Date	Revision	Description of Changes
April 1999	2	Second Issue
June 2004	3	Modified the style-sheet in compliance with the last revision of the "Corporate Technical Pubblications Design Guide".

Obsolete Produci(s) - Obsolete Produci(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com