

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

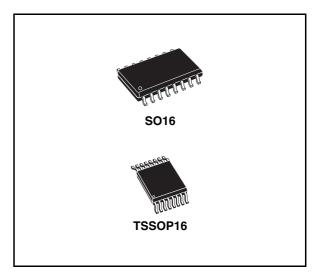
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Single chip RDS demodulator + filter

Features

- Very high RDS demodulation quality with improved digital signal processing
- High performance, 57 kHz bandpass filter (8th order)
- Filter adjustment free and without external components
- Purely digitaL RDS Demodulation without external components
- ARI (SK indication) and RDS signal quality output
- 4.332 MHz crystal oscillator (8.664 and 17.328 MHz optional)
- Low noise CMOS technology
- Low radiation

Description

The TDA7479 recovers the additional inaudible RDS information which is transmitted by FM radio broadcasting stations and operates in accordance with the EBU (European Broadcasting Union) specifications.

The device is made up of two sections: a cascaded antialiasing + switched capacitors 8th bandpass filter for precise RDS band selection and a demodulating section that performs the extraction od RDS data stream (RDDA) and clock (RDCL), to be further processed by a suitable RDS decoder.

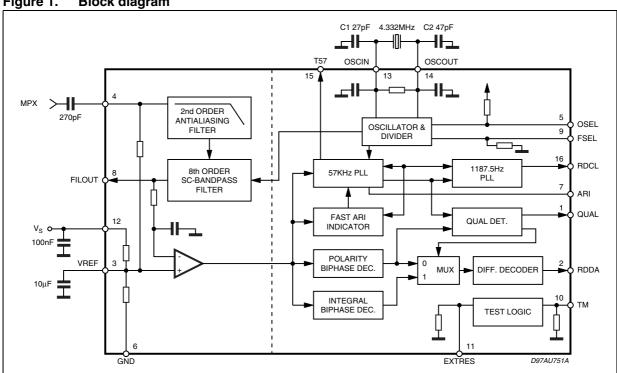
Outputs for RDS signal quality and ARI indication are also present.

Table 1. Device summary

Order code	Package	Packing
E-TDA7479D ⁽¹⁾	SO16	Tube
E-TDA7479AD ⁽¹⁾	TSSOP16	Tube

^{1.} Device in ECOPACK® package (see Section 5: Package information on page 9).

Contents TDA7479


Contents

1	Bloc	k diagram and pin description	3
	1.1	Block diagram	3
	1.2	Pin description	3
2	Elect	trical specification	5
	2.1	Thermal data	5
	2.2	Absolute maximum ratings	5
	2.3	Electrical characteristics	5
3	Outp	out timing	7
4	Osci	llator controls (FSEL, OSEL)	8
5	Pack	age information	9
6	Revis	sion history	1

Block diagram and pin description

1.1 **Block diagram**

Figure 1. **Block diagram**

Pin description 1.2

Figure 2. Pin connection (top view)

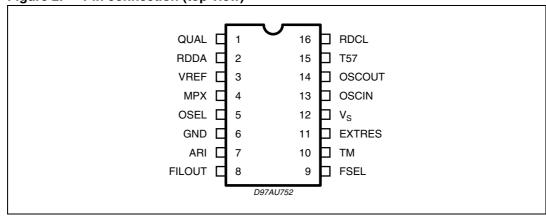


Table 2. Pin description

No pin	Name	Description					
1	QUAL	Output for signal quality indication (High = good)					
2	RDDA	RDS data output					
3	VREF	Reference voltage					
4	MPX	RDS input signal					
5	OSEL	Oscillator selector pin: - open, closed to V _S = quartz oscillator - closed to GND = external driven					
6	GND	Ground					
7	ARI	Output for ARI indication: - high when RDS+ARI are present - high when only ARI is present - low when only RDS is present - undefined when nos signal is present					
8	FILOUT	Filter output					
9	FSEL	Frequency selector pin: - 100 kHz to V _S = 17.328 MHz - open = 4.332MHz - closed to VS = 8.664 MHz					
10	ТМ	Test mode pin: - open = normal operation - closed to VS = test mode					
11	EXTRES	Reset pin: - open = run mode closed to VS = reset condition					
12	V _S	Supply voltage					
13	OSCIN	Oscillator input					
14	OSCOUT	Oscillator output					
15	T57	Testing output pin: 57 kHz clock output					
16	RDCL	RDS clock output 1187.5 Hz					

2 Electrical specification

2.1 Thermal data

Table 3. Thermal data

Symbol	Parameter	SO16	TSSOP16	Unit
R _{th j-case}	Thermal resistance junction to case Max	. 200	160	°C/W

2.2 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _S	Supply voltage	-0.3 to 7	V
T _{op}	Operating temperature range	-40 to 85	°C
T _{stg}	Storage temperature	-55 to 150	°C

2.3 Electrical characteristics

Table 5. Electrical characteristics

 $(T_{amb} = 25$ °C, $V_S = 5V$, unless otherwise specified)

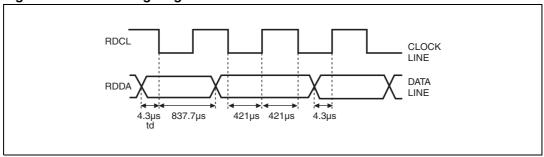
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _S	Supply voltage		4.5	5	5.5	V
I _S	Supply current			7.5	11.0	mA
Filter						
f _C	Center frequency		56.5	57	57.5	kHz
BW	3dB Bandwidth		2.5	3	3.5	kHz
G	Gain	f = 57 kHz	18	20	22	dB
		Δf ± 4 kHz	18	22		dB
Α	Attenuation	f = 38 kHz	50	60		dB
		f = 67 kHz	35	45		dB
R _I	Input impedance of MPX		80	120	150	ΚΩ
R _L	Load impedance on FILOUT		1			MΩ
S/N	Signal to noise ratio	V _{IN} = 3 mVrms	30	40		dB
V _{IN}	MPX input signal	f = 19 kHz; T3 ≤ 40 dB ⁽¹⁾ f = 57 kHz (RDS+ ARI)			1000 50	$\begin{array}{c} {\rm mV_{RMS}} \\ {\rm mV_{RMS}} \end{array}$
S _{RDS}	RDS detection sensitivity		1			mVrms
S _{ARI}	ARI Detection Sensitivity		3			mVrms

5/

Table 5.

Electrical characteristics (continued) $(T_{amb} = 25$ °C, $V_{S} = 5$ V, unless otherwise specified)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
V_{REF}	Reference			V _S /2		V		
Demodul	ator							
Input pins Input pin	• • • • • • • • • • • • • • • • • • • •	nternal pull down resistor rnal pull up resistor						
I _{PD}	Input current	V _{IN} = 5 V (pull-down input)	15		30	μΑ		
I _{PU}	Input current	V _{IN} = 0 V (pull-up input)	-25		-10	μΑ		
V _{IH}	Input voltage high		0.7 · V _S	$0.8 \cdot V_S$		V		
V _{IL}	Input voltage low			$0.2 \cdot V_S$	$0.3 \cdot V_{S}$	V		
Output pii	ns (RDCL, RDDA, ARI, QUAL, T57	")						
V _{OH}	Output voltage high	I _L = 0.5mA	4	4.6		V		
V _{OL}	Output voltage low	I _L = 0.5mA		0.4	1	V		
Oscillato	Oscillator							
V _{CLL}	Input level OSCIN pin	OSEL = open circuit			1	V		
V	Input level OSCIN pin	OSEL = open circuit	4			V		
V_{CLH}	Amplitude OSCOUT	OSEL = open circuit		4.5		V		
V _{PP}	Amplitude OSCIN	OSEL = GND, f = 4.332 MHz OSEL = GND, f = 8.664 MHz		100 120		mVpp mVpp		
• •	(for external drive)	OSEL = GND, f = 17.328 MHz		150		mVpp		


^{1.} The 3rd harmonic (57 kHz) must be less than -40 dB with respect to the input signal plus gain.

TDA7479 Output timing

3 Output timing

The RDS (1187.5Hz) output clock on RDCL line is synchronized to the incoming data. According to the internal PLL lock condition data change can result on the falling or on the rising clock edge (see *Figure 3*). Whichever clock edge is used by the decoder (rising or falling edge) the data will remain valid for 416.7 μ s after the clock transition.

7/12

4 Oscillator controls (FSEL, OSEL)

Three different crystal frequencies can be used. The adoption of the internal clock divider to the external crystal is achieved via the input pin FSEL. See the following table for reference:

Table 6. Crystal frequencies

Crystal	FSEL (pin configuration)
4.332MHz	
8.664MHz	connected to GND or open connected to Vs external resistor of 100K to Vs
17.328MHz	

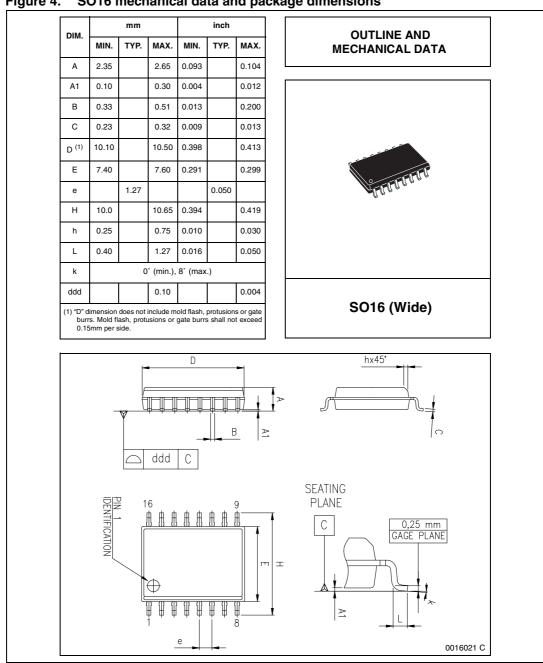
A special mode is introduced to reduce EMI. With pin OSEL connected to GND the internal oscillator is switched off and an external sinusoidal frequency could be applied on OSCIN. The peak to peak voltage of this signal can be reduced down to 60mV.

In this mode the frequency selection via FSEL is still active.

Suggested values of C1 and C2 are shown in the following table:

Table 7. C1 and C2 value

Crystal	C1	C2
4.332MHz	27pF	47pF
8.664MHz	27pF	-
17.328MHz	27pF	-


TDA7479 Package information

5 **Package information**

In order to meet environmental requirements, ST (also) offers these devices in ECOPACK® packages. ECOPACK® packages are lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

SO16 mechanical data and package dimensions

Package information TDA7479

Figure 5. TSSOP16 mechanical data and package dimensions

DIM	DIM. inch				inch	OUT ING AND		
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	OUTLINE AND MECHANICAL DATA	
Α			1.200			0.047		
A1	0.050		0.150	0.002		0.006		
A2	0.800	1.000	1.050	0.031	0.039	0.041		
b	0.190		0.300	0.007		0.012		
С	0.090		0.200	0.005		0.009	CARRIER D	
D (1)	4.900	5.000	5.100	0.114	0.118	0.122	Secre	
Е	6.200	6.400	6.600	0.244	0.252	0.260		
E1 (1)	4.300	4.400	4.500	0.170	0.173	0.177	William .	
е		0.650			0.026		•	
L	0.450	0.600	0.750	0.018	0.024	0.030		
L1		1.000			0.039			
k		()° (min.)	8° (max	.)			
aaa			0.100			0.004	TCCOD16	
Note: 1. D and E1 does not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch) per side. TSSOP16 (Body 4.4mm)								
D E1								
PIN 1 IDENTIFICATION SEATING PLANE O,25 mm O10 inch GAGE PLANE L L L L L L L L L L L L L L L L L L								

TDA7479 Revision history

6 Revision history

Table 8. Document revision history

Date	Revision	Changes
10-Sep-2004	4	Initial release.
20-Nov-2004	5	Add in <i>Table 5: Electrical characteristics on page 5</i> the "RDS and ARI Detection Sensitivity" parameters.
02-Dec-2004	6	Modified the order codes table.
04-Nov-2008	7	Document reformatted. Updated Table 1: Device summary on page 1. Updated Section 5: Package information on page 9.
16-Sept-2013	8	Updated Disclaimer

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

 ${\bf STMicroelectronics}\ group\ of\ companies$

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

