

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

25W MONO CLASS-D AMPLIFIER

1 FEATURES

- 25W OUTPUT POWER: RL = $8\Omega/4\Omega$; THD = 10%
- HIGH EFFICIENCY
- WIDE SUPPLY VOLTAGE RANGE (UP TO ±25V)
- SPLIT SUPPLY
- OVERVOLTAGEPROTECTION
- ST-BY AND MUTE FEATURES
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

2 DESCRIPTION

The TDA7482 is an audio class-D amplifier as-

Figure 1. Package

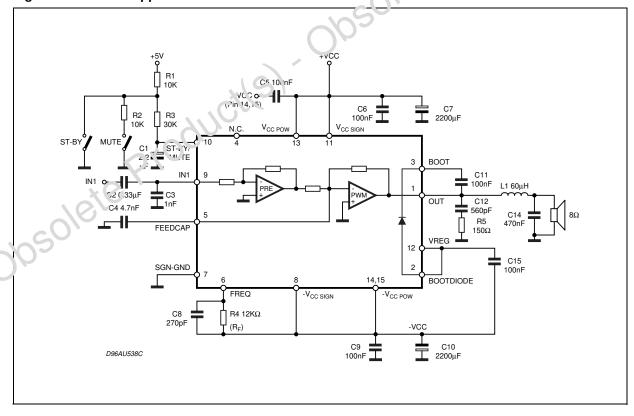
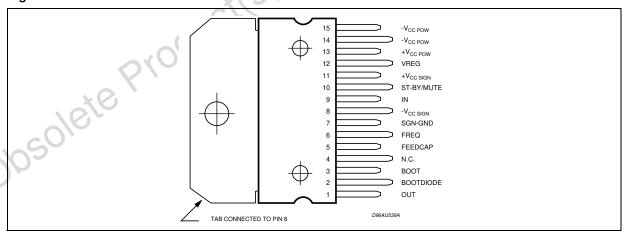


Table 1. Order Codes

Part Number	Package
TDA7482	Multiwatt15

sembled in Multiwatt15 package specially designed for high efficiency applications mainly for TV and Home Stereo sets.

Figure 2. Test and Application Circuit.


Table 2. Pin Description

N°	Pin	Function	
1	OUT	PWM OUTPUT	
2	BOOTDIODE	BOOTSTRAP DIODE ANODE	
3	BOOT	BOOTSTRAP	
4	NC	NOT CONNECTED	
5	FEEDCAP	FEEDBACK INTEGRATING CAPACITOR	
6	FREQ	SETTING FREQUENCY RESISTOR	
7	SGN-GND	SIGNAL GROUND	
8	-V _{CC} SIGN	SIGNAL NEGATIVE SUPPLY	
9	IN	INPUT	
10	ST-BY/MUTE	CONTROL STATE PIN	
11	+V _{CC} SIGN	POSITIVE SIGNAL SUPPLY	
12	VREG	INTERNAL VOLTAGE REGULATOR	
13	+V _{CC} POW	POSITIVE POWER SUPPLY	
14	-V _{CC} POW	NEGATIVE POWER SUPPLY (to be connected to pin 13 via C5)	
15	-V _{CC} POW	NEGATIVE POWER SUPPLY (to be connected to pin 13 via C5)	

Table 3. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	±28	V
P _{tot}	Power Dissipation T _{case} = 70°C	35	W
T_{stg},T_{j}	Storage and Junction Temperature –40 to 150	°C	
V _{FREQ}	Maximum Voltage Across RF (pin6)	8	V
T _{op}	Operating Temperature Range	0 to 70	°C
ESD	Max ESD on Pins	±1.2	KV

Figure 3.

Table 4. Thermal Data

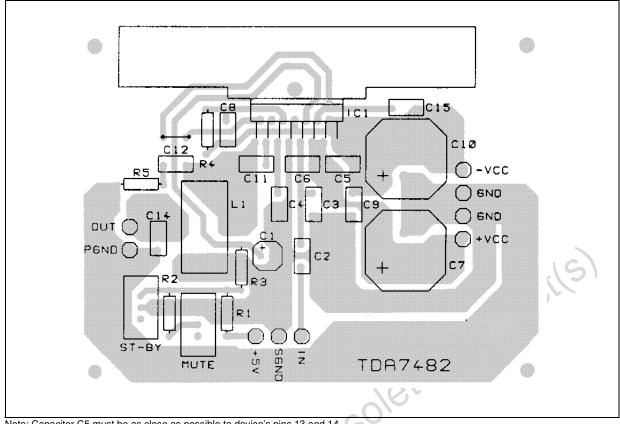
Symbol	Parameter	Value	Unit
T _{th j-case}	Thermal Resistance Junction-case	1.8 to 2.5	°C/W

47/

Table 5. Electrical Characteristcs (Refer to the test circuit, V_{CC} = ±21V; R_L = 8 Ω ; R_S = 50 Ω ; R_F = 12K Ω ; Demod.. filter L = 60 μ H, C = 470nF; f = 1KHz; T_{amb} = 25°°C unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range		±10		±25	V
Iq	Total Quiescent Current	R _L = ∞, No LC Filter		40	60	mA
Vos	Output Offset Voltage	Play Condition	-70	-30	10	mV
Po	Output Power	THD = 10% THD = 1%	20 14	25 18		W W
P _O	Output Power	$\begin{aligned} R_L &= 4\Omega \; ; \; V_{CC} = \pm 16V; \\ THD &= 10\% \\ THD &= 1\% \; (*) \end{aligned}$		25 18		W W
P _D	Maximum Dissipated Power	$V_{CC} = \pm 21V; R_L = 8\Omega;$ $P_O = 25W THD 10\%$		3.8		W
η	Efficiency $\equiv \frac{P_o}{P_O + P_D} \equiv \frac{P_o}{P_I} (**)$	$V_{CC} = \pm 21V; R_L = 8\Omega;$ $P_O = 18W \text{ THD } 10\%$		87		%
η _{max}	Top Efficiency maximum	V_{CC} = ±25V; R_L = 8 Ω ; P_O = 43W THD 20%		88.5	*/9	%
THD	Total Harmonic Distortion	$R_L = 8\Omega$; $P_O = 1W$		0.1	$C_{f,f}$	%
I _{max}	Overcurrent Protection Threshold	R _L = 0	3.5	5		Α
Tj	Thermal Shut-down Junction Temperature		O	150		°C
G _V	Closed Loop Gain		29	30	31	dB
e _N	Total Input Noise	A Curve f = 20Hz to 22KHz	,	7 12		μV μV
V _{CCTOT MAX}	Maximum Total V _{CC} Protection	c0'	50			V
Ri	Input Resistance	003	20	30		kΩ
SVR	Supply Voltage Rejection	$f = 100Hz$; $V_r = 0.5$	46	60		dB
T _r , T _f	Rising and Falling Time			50		ns
R _{DSON}	Power Transistor on Resistance			0.4		Ω
F _{SW-OP}	Switching Frequency Operative Range		100		200	KHz
F _{SW}	Switching Frequency		100	120	140	KHz
B _F	Zero Signal Frequency Constant (***)			1.4x10 ⁹		HzΩ
R _F	Frequency Controller Resistor Range (****)		7	12	14	ΚΩ
MUTE & STA	ND-BY FUNCTIONS					
V _{ST-BY}	Stand-by range				0.8	V
V _{MUTE}	Mute Range		1.8		2.5	V
V _{PLAY}	Play Range (1)		4			V
A _{MUTE}	Mute Attenuation		60	80		dB
I _{qST-BY}	Quiescent Current @ Stand-by			3	5	mA

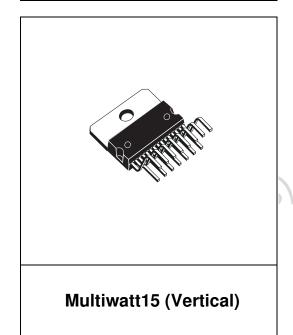
^{*:} The output LC filtermust be changed to: $L = 30\mu H$; $C = 1\mu F$


⁽¹⁾ For V10 >5.2V, an input impedance of $10K\Omega$ is to be considered

^{**:} P_O = measured across the load using the following inductor: COIL 58120 MPPA2 (magnetics) TURNS: 28 ϕ 1mm

^{***:} The zero-signal switching frequency can be obtained using the following expression: F_{SW}= B_F/R_F
****: The maximum value of R_F is related to the maximum possible value for the voltage drop on R_F itself

Figure 4. Recommended P.C. Board and Component Layout of the Circuit of Figure 2


Note: Capacitor C5 must be as close as possible to device's pins 13 and 14

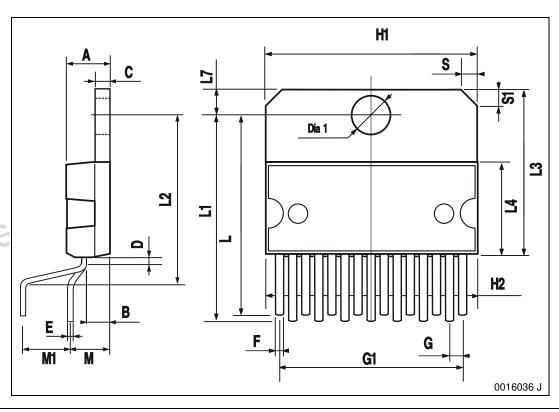

Obsolete Product(s)

Figure 5. Multiwatt15 Mechanical Data & Package Dimensions

DIM.		mm		inch		
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A5						0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
Е	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.87	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.73	5.08	5.43	0.186	0.200	0.214
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

Table 1. Revision History

Date	Revision	Description of Changes
September 2003	3	First Issue in EDOCS
October 2004	4	Aligned the graphic style to be compliant with the new "Corporate Technical Pubblications Design Guide"

Obsolete Product(s)

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwish se under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

