

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

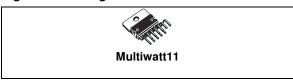
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

6W+6W STEREO AMPLIFIER WITH MUTE & ST-B


FEATURES

- WIDE SUPPLY VOLTAGE RANGE UP TO +18V
- 6+6W @THD = 10%, $R_L = 8\Omega$, $V_S = \pm 14V$
- NO POP AT TURN-ON/OFF
- MUTE (POP FREE)
- STAND-BY FEATURE (LOW Ia)
- SHORT CIRCUIT PROTECTION TO GND
- THERMAL OVERLOAD PROTECTION

2 **DESCRIPTION**

The TDA7499 is class AB dual Audio power amplifier assembled in the Multiwatt package, specially designed for high quality sound application as Hi-Fi music centers and stereo TV sets.

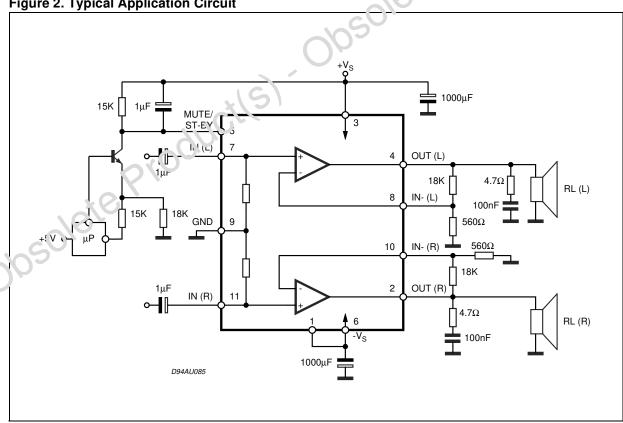

Figure 1. Package

Table 1. Order Codes

Part Number	Package
TDA7499	Multiwatt11V
eleje Pr	oducito
-6	

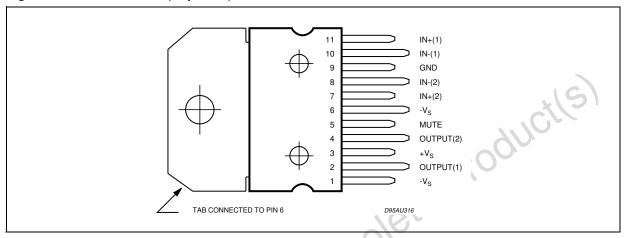

Figure 2. Typical Application Circuit

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	±20	V
Io	Output Power Current (internally limited)	2.5	Α
P _{tot}	Total Power Dissipation (Tamb = 70°C)	23	W
T _{amb}	Ambient Operating Temperature (1)	0 to 70	°C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

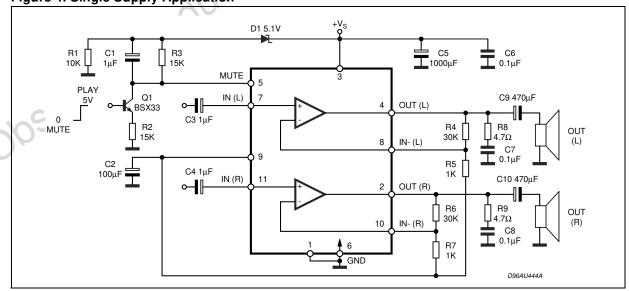

Figure 3. Pin Connection (Top view)

Table 3. Thermal Data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case	max 2.8	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	max 35	°C/W

Figure 4. Single Supply Application

47/

Table 4. Electrical Characteristcs (Refer to the test circuit VS = $\pm 10V$; Rs = 50Ω ; GV = 30dB, f = 1KHz; Tamb = $25^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range	$R_L = 8\Omega$	±5		±18	V
		$R_L = 4\Omega;$	±5		±13.5	V
Iq	Total Quiescent Current			50	90	mA
Vos	Input Offset Voltage		-25		+25	mV
lb	Output Bias Current			500		nA
P _O	Output Power	$THD = 10\%;$ $R_L = 8\Omega;$ $V_S = \pm 8.5V; R_L = 4\Omega;$		6 6		W W
		$THD = 1\%;$ $R_L = 8\Omega;$ $V_S = \pm 8.5V; R_L = 4\Omega;$		5 5		W W
THD	Total Harmonic Distortion	$R_L = 8\Omega$; $P_O = 1W$; $f = 1KHz$;		0.03		%
		$R_L = 8\Omega; V_S = \pm 10V;$ $P_O = 0.1 \text{ to } 3W;$ f = 100Hz to 15KHz;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.2	0.5	%
		$R_L = 4\Omega$; $P_O = 1W$; $f = 1KHz$;	4	0.02		%
		$R_L = 4\Omega; V_S = \pm 8.5V;$ $P_O = 0.1 \text{ to } 2W;$ f = 100Hz to 15KHz;		0.2	1	%
Ст	Cross Talk	f = 1KHz; f = 10KHz;	50	70 60		dB dB
SR	Slew Rate	_ /	6.5	10		V/µs
G _{OL}	Open Loop Voltage Gain	5		80		dB
e _N	Total Output Noise	A Curve f = 20Hz to 22KHz		3 4	8	μV μV
Ri	Input Resistance		15	20		ΚΩ
SVR	Supply Voltage Rejection (each channel)	f = 100Hz; V _R = 0.5V		60		dB
Tj	Thermal Shut-down Junction Temperature			145		°C
MUTE & I	NPUT SELECTION FUNCTIONS		•		•	•
V _{MUTE}	Mute /Play threshold		-7	-6	-5	V
A _{MUTE}	Mute Attenuation		60	70		dB
STAND-B	Y FUNCTIONS [ref: +V _S] (only for	Split Supply)				
V _{ST-BY}	Stand-by Mute threshold		-3.5	-2.5	-0.5	V
A _{ST-BY}	Stand-by Attenuation			110		dB
I _{qST-BY}	Quiescent Current @ Stand-by			3	6	mA

Table 5. Electrical Characteristics in Single Supply

(by correlation with test conditions in split supply)

	Parameter	Test Condition	Min.	Тур.	Max.	
Vs	Supply Range	$R_L = 8\Omega$	10		36	
		$R_L = 4\Omega$	10		27	
Iq	Total Quiescent Current			50	90	
lb	Non Inverting Input Bias Current			500		
Po	Output Power	$THD = 10\%$ $R_L = 8\Omega$ $V_S = 22V; R_L = 4\Omega$	8	10 7.5		
		$\begin{aligned} & \text{THD} = 1\% \\ & \text{R}_{\text{L}} = 8\Omega \\ & \text{V}_{\text{S}} = 22\text{V}; \text{R}_{\text{L}} = 4\Omega \end{aligned}$	6	7.5 6		
THD	Total Harmonic Distortion	$R_L = 8\Omega$; $P_O = 1W$; $f = 1KHz$		0.03		
		$R_L = 8\Omega$; $P_O = 0.1$ to 5W; $V_S = 26V$; f = 100Hz to 15KHz		0.2	0.5	/ (1)
		$R_L = 4\Omega$; $P_O = 1W$; $f = 1KHz$		0.02	CI	-
		$R_L = 4\Omega$; $V_S = 20V$; $P_O = 0.1$ to $4W$; $f = 100Hz$ to $15KHz$	2	0.2	1	
Ст	Cross Talk	f = 1KHz f = 10KHz	50	70 60		
SR	Slew Rate	10.10	6.5	10		
G_{OL}	Open Loop Voltage Gain			80		
e _N	Total Input Noise	A Curve f = 20Hz to 22KHz		3 4	8	
R_i	Input Resistance		15	20		
SVR	Supply Voltage Rejection (each channel)	fr = 100Hz; Vr = 0.5V		60		
Tj	Thermal Shut-down Junction Temperature			145		
MUTE FU	NCTION [ref: +V _S]					
VT _{MUTE}	Mute / Play Threshold		-7	-6	-5	
A _M	Mute Attenuation		60	70		

3 MUTE STAND-BY FUNCTION

The pin 5 (MUTE/STAND-BY) controls the amplifier status by two different thresholds, referred to +V_S.

- When V_{pin5} higher than = $+V_S$ -2.5V the amplifier is in Stand-by mode and the final stage generators are off.
- When V_{pin5} between = $+V_S$ -2.5V and V_S -6V the final stage generators are switched on and the amplifier is in mute mode.
- When V_{pin5} lower than = $+V_S$ -6V the amplifier is play mode.

Figure 5.

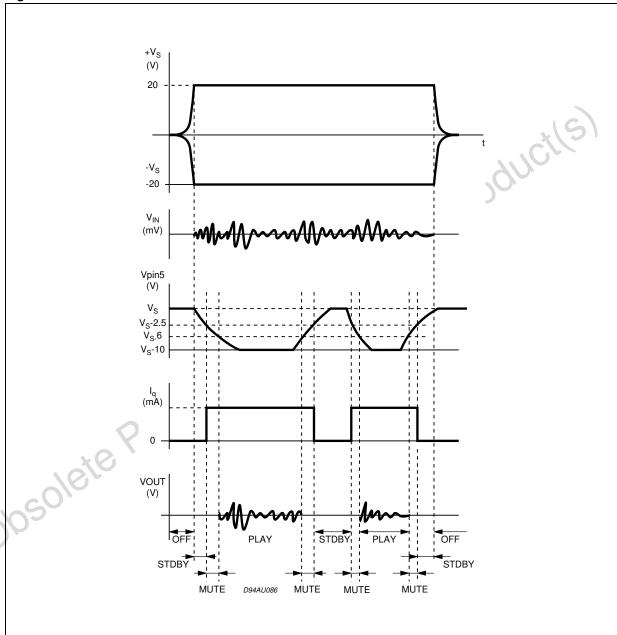


Figure 6. Test and Application Circuit (Stereo Configuration)

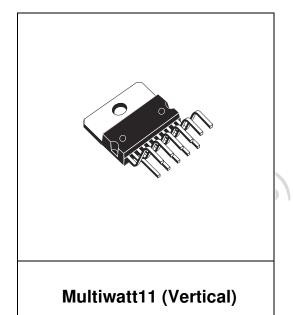
4 APPLICATION SUGGESTIONS

(Demo Board Schematic)

The recommended values of the external components are those shown the demoboard schematic different values can be used, the following table can help the designer.

Table 6.

COMPONENT	SUGGESTION VALUE	PURPOSE	LARGER THAN RECOMMENDED VALUE	SMALLER THAN RECOMMENDED VALUE
R1	10ΚΩ	Mute Circuit	Increase of Dz Biasing Current	
R2	15ΚΩ	Mute Circuit	V _{pin} #5 Shifted Downward	V _{pin} #5 Shifted Upward
R3	18ΚΩ	Mute Circuit	V _{pin} #5 Shifted Upward	V _{pin} #5 Shifted Downward
R4	15ΚΩ	Mute Circuit	V _{pin} #5 Shifted Upward	V _{pin} #5 Shifted Downward
R5, R8	18ΚΩ	Closed Loop Gain	Increase of Gain	
R6, R9	560ΚΩ	Setting (*)	Decrease of Gain	
R7, R10	4.7Ω	Frequency Stability	Danger of Oscillations	Danger of Oscillations
C1, C2	1μF	Input DC Decoupling		Higher low frequency cutoff
C3	1μF	St-By/Mute Time Constant	Larger On/Off Time	Smaller On/Off Time
C4, C6	1000μF	Supply Voltage Bypass		Danger of Oscillations
C5, C7	0.1μF	Supply Voltage Bypass		Danger of Oscillations
C8, C9	0.1μF	Frequency Stability		
Dz	5.1V	Mute Circuit		


^(*) Closed loop gain has to be ≥25dB

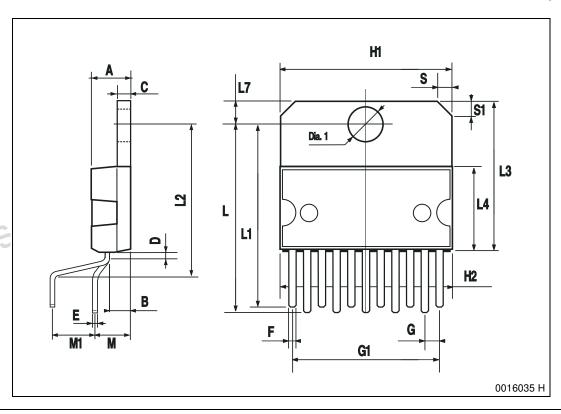

47/

Figure 7. Multiwatt11V Mechanical Data & Package Dimensions

DIM.	mm					
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
Е	0.49		0.55	0.019		0.022
F	0.88		0.95	0.035		0.037
G	1.45	1.7	1.95	0.057	0.067	0.077
G1	16.75	17	17.25	0.659	0.669	0.679
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.87	0.886
L2	17.4		18.1	0.685		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.73	5.08	5.43	0.186	0.200	0.214
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

Table 7. Revision History

Date	Revision	Description of Changes	
September 2003	4	First Issue in EDOCS DMS	
August 2004	5	Stylesheet update. Change fig. 4	

Obsolete Product(s).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwish se under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

