

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Delta/sigma cascade 20 bit stereo DAC

Features

- 20-bit resolution single ended output
- Analog reconstruction third order Chebyshev filter
- I²S input data format
- On chip PLL
- System clock: 64 Fs
- 2 output channels
- 0.9 VRMs single ended output dynamic
- 3.3 V power supply
- Reset
- Sampling rate 36 kHz to 48 kHz

The TDA7535 is a stereo, digital-to-analco converter designed for audio application including digital interpolation filter a third order multi-bit Delta-Sigma DAC, a third order Chebyshev's reconstruction tilter and a differential to single ended outou converter. This device is fabricated in highly advanced CMOS, where high speed precision analog circuits are combined with high density logic circuits. The TDA7535, according to standard audio converters, can accept any I²S data format.

The TDA7535 is available in SO14 package. The total power consumption is less than 75 mW.

TDA7535 is suitable for a wide variety of applications where high performance are required. Its low cost and single 3.3 V power supply make it ideal for several applications, such as CD players, MPEG audio, MIDI applications, CD-ROM drives, CD-Interactive, digital radio applications and so on. An evaluation board is available to perform measurement and to make listening tests.

Table 1. Device summary

Order code	Package	Packing
TDA7535	SO14	Tube
TDA7535013TR	SO14	Tape and reel

Contents TDA7535

Contents

1	Block diagram and pin description	. 3
2	Electrical specification	. 4
	2.1 Absolute maximum ratings	. 4
	2.2 Thermal data	. 4
	2.3 Recommended DC operating conditions	. 4
	2.4 Power consumption	. 5
	2.4 Power consumption	. 5
	2.6 Low voltage CMOS interface DC electrical characteristics	. 5
	2.7 DAC electrical characteristics	
3	I ² S interface	. 7
4	Application circuit	. 9
5	Package information	10
6	Revision history	11
Obsol	leje Produlce	

1 Block diagram and pin description

Figure 1. Block diagram

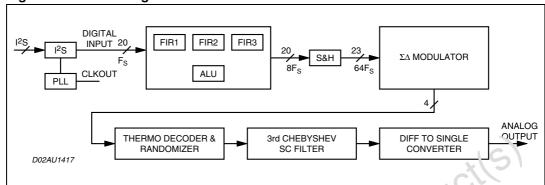


Figure 2. Pin connection (top view)

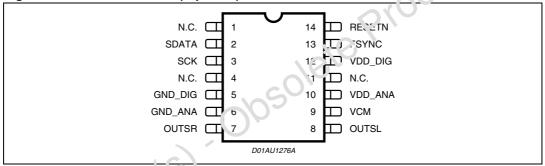


Table 2. Pin function.

	Pin #	Pin name	Input/output power	Description
	2011	N.C.	-	-
	2	SDATA	I	I2S digital data input
0/8	3	SCK	I	I2S clock input
	4	N.C.	-	-
0105	5	GND_DIG	Р	Digital ground
Ob	6	GND_ANA	Р	Analog ground
	7	OUTSR	0	Right channel single ended output
	8	OUTSL	0	Left channel single ended output
	9	VCM	Р	Reference 1.65 V externally filtered
	10	VDD_ANA	Р	Analog 3.3 V supply
	11	N.C.	-	-
	12	VDD_DIG	Р	Digital 3.3 V-supply
	13	FSYNC	I	I2S Left-right channel selector
	14	RESETN	I	Reset (active low)

2 Electrical specification

2.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V _{DD} V _{CC}	Power supplies	Digital Analog	-0.5 to +4.6 -0.5 to +4.6	V V
V _{aio}	Analog input and output voltage		-0.5 to (V _{CC} +0.5)	V
V _{dio}	Digital input and output voltage		-0.5 to (V _{DD} +0.5)	V
V _{di5}	Digital input voltage (5 V tolerant)		-0.5 to 6.5	9 V
T _j	Operating junction temperature range		-40 to 12.5	°C
T _{stg}	Storage temperature		-55 tc 150	°C

Warning: Operation at or beyond these limit nay result in permanent

damage to the device. Normal operation is not guaranteed at

these extremes.

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-cmb}	Thermal resistance junction to ambient (1)	85	°C/W

^{1.} in still air.

2.3 Recommended DC operating conditions

 Table 5.
 Recommended DC operating conditions

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V_{DD}	3.3 V digital power supply voltage		3.15	3.3	3.45	V
V _{CC}	3.3 V analog power supply voltage		3.15	3.3	3.45	V

2.4 Power consumption

Table 6. Power consumption

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{dd}	Total maximum current	Power supply @ 3.3 V and $T_j = 125$ °C		21.5	25	mA

2.5 General interface electrical characteristics

Table 7. General interface electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
l _{il}	Low level input current without pull-up device	$V_i = 0 \ V^{(1)}$			C.T.	μА
l _{ih}	High level input current without pull-up device	$V_i = V_{dd}^{(1)}$	- 10	29/	1	μА
I _{latchup}	I/O latch-up current	$V < 0 V, V > V_{dd}$	250			mA
V _{esd}	Electrostatic protection	Leakage, 1 μA ⁽²⁾	2000			V

^{1.} The leakage currents are generally very small, <1nA. The value given here, 1 nA is the maximum that can occur after an Electrostatic Stress on the pin.

2.6 Low voltage CMOS interface DC electrical characteristics

Table 8. Low voltage CMOS interface DC electrical characteristics

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{il}	Low Level Input (of age				0.2*V _d	V
V _{ih}	High .svel Input Voltage		0.8*V _d			٧
V _{hy} ,	Sc/imitt trigger hysteresis		0.8			V

^{2.} Human body model.

DAC electrical characteristics 2.7

Table 9. **DAC** electrical characteristics

V_{dd} = 3.3 V; T_{amb} = 25 °C; Input signal frequency = sinus wave generated by audio precision Sys.2; Input signal amplitude (see notes); Noise integration bandwidth = 20 Hz to 22 kHz (A- weighted)

Parameter	Test condition	Min.	Тур.	Max.	Unit
	@0 dB		89		dB
Noise + distortion (1)	@-6 dBb		94		dB
Noise + distortion	@-40 dB		96		dB
	@-60 dB		96		dB
Total harmonic distortion	see note (2)	70 ⁽³⁾	94		åВ
Dynamic range	see note (4)	84 ⁽⁵⁾	96		dB
Crosstalk	see note ⁽⁶⁾		-95	100	dB
Full scale output voltage	V _{dd} = 3.15 to 3.45 V Full scale input	0.8	0.9	1.0	Vrms
Input sampling rate		36		48	kHz
Passband ripple		8	0.12		dB
Stopband	@ 3dB @ 90dB 44.1kHz sam bling rate	21.53		24.80	kHz
Interchannel gain mismatch		·	0.05	0.1	dB

^{1.} It is the ratio between the mɛ xi. ເພດ ກ່າງput signal and the integration of the in-band noise after deducing the power of signal fundameກະປາ. 't depends on the input signal amplitude. In this case 0dB means full scale digital, 1 kHz frequency used.

^{2.} It is the ratio of the rams value of the signal fundamental component at 0 dB (full scale digital) to the rms value of all of the harmonic components in the band.

^{3.} By considion to beuch results. ATE limits are 60 dB.

בים און signal, with 60dB added to compensate fo . عy correlation to beuch results. ATE limits are 80 dB.

ε. Left channel on with 0dB/1kHz input signal, Right channel on with DC input signal. 4. Measured using the SNR at -60dB input signal, with 60dB added to compensate for small input signal.

TDA7535 I²S interface

3 I²S interface

Figure 3. I²S interface diagram

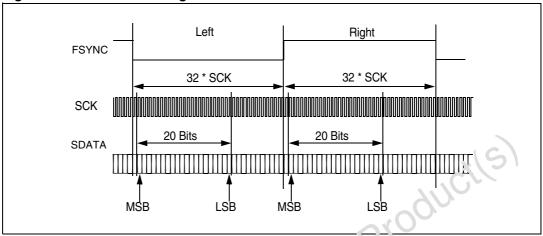


Figure 4. I²S timings

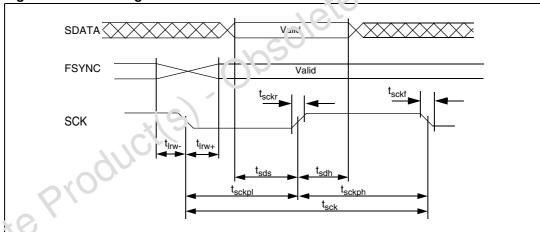


Table 10 Timing characteristics

iming	Description	Min.	Max.	Unit
t _{sck}	Clock cycle ⁽¹⁾	1/(64*Fs) - 150ps _{RMS}	1/(64*Fs) + 150ps _{RMS}	ns
t _{sckpl}	SCK phase low	0.5*t _{sck} - 1%	0.5*t _{sck} +1%	ns
t _{sckph}	SCK phase high	0.5*t _{sck} - 1%	0.5*t _{sck} +1%	ns
t _{lrw-}	FSYNC switching time window before SCK falling edge ⁽²⁾	0	0.125*t _{sck} -10	ns
t _{lrw+}	FSYNC switching time window after SCK falling edge ⁽²⁾⁾	0	0.125*t _{sck} -10	ns
t _{sds}	SDATA setup time	60		ns
t _{sdh}	SDATA hold time	30		ns

I²S interface TDA7535

Table 10. Timing characteristics (continued)

Timing	Description	Min.	Max.	Unit
t _{sckr}	SCK rise time		22	ns
t _{sckf}	SCK fall time		20	ns

- 1. SCK clock defines the Fs, being the Sample Rate. This input clock needs a jitter below \sim 212ps_{RMS}.
- 2. FSYNC switches inside the time window as specified w.r.t. to falling edge of SCK.

Figure 5. Power up and reset sequence

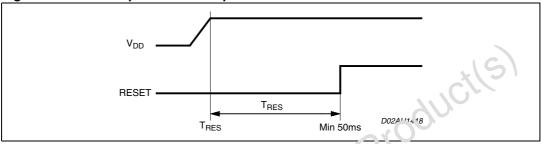
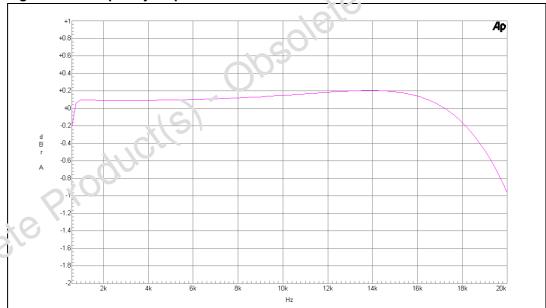
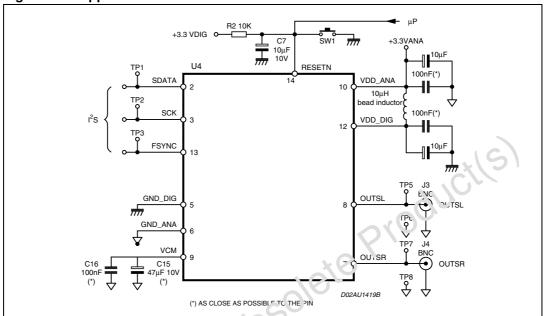



Figure 6. Frequency response



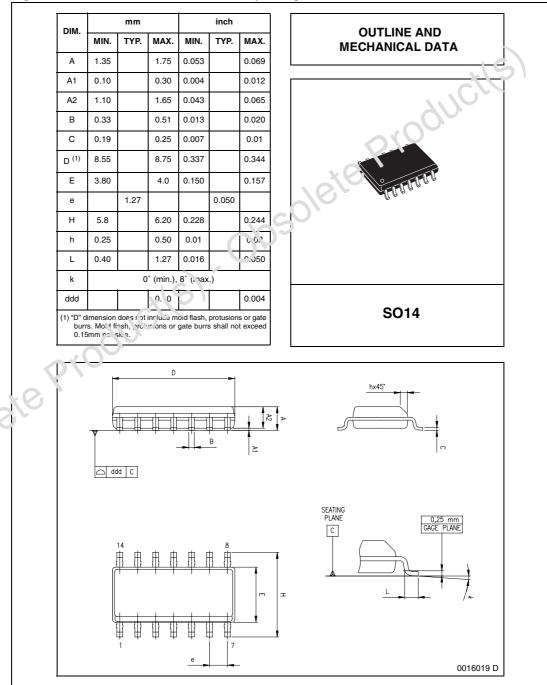
TDA7535 Application circuit

4 Application circuit

Obsolete Product(s)

Figure 7. Application circuit

5//


Package information TDA7535

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

 $\mathsf{ECOPACK}^{\mathbb{R}}$ is an ST trademark.

Figure 8. SO14 mechanical data and package dimensions

TDA7535 Revision history

6 Revision history

Table 11. Document revision history

	Date	Revision	Changes
	13-Dec- 2003	5	Initial release.
	21-Dec- 2005	6	Update electrical characteristics. Add revision history table.
	03-Feb-2006	7	Updated max. value of t _{sckr} and t _{sck} t parameter on page 5/9.
	06-Feb-2009	8	Document reformatted. Updated Section 5: Package information on page 10.
Obsolete Producits)			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its suinsidia. 'ec.' (ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and sen ice's described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and solvices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property Liquis is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a training arms to evering the use in any manner whatsoever of such third party products or services or any intellectual property contained under this document. If any part of this document refers to any third party products or services or any intellectual property contained under this document. If any part of this document refers to any third party products or services or any intellectual property contained under this document. If any part of this document refers to any third party products or services or any intellectual property contained under this document. If any part of this document refers to any third party products or services or any intellectual property contained under this document. If any part of this document under this document is a grant by ST for the use of such third party products or services or any intellectual property contained under this document.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANCIOR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNE'SE FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VIRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARHANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCT'S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PF OP ENTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of S. p oducts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war and granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liabi. To S.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com