

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

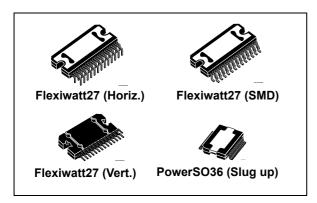
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



4 x 50 W power amplifier with high efficiency and built-in I²C diagnostic

Datasheet - production data

Features

- Multipower BCD technology
- MOSFET output power stage
- DMOS power output
- New high efficiency (class SB)
- High output power capability 4 x 28 W / 4 Ω @ 14.4 V, 1 kHz, 10 % THD, 4 x 50 W max power
- Max. output power 4 x 72 W / 2 Ω
- Full I²C bus driving:
 - Standby
 - Independent front/rear soft play/mute
 - Selectable gain 26 dB /12 dB (for low noise line output function)
 - High efficiency enable/disable
 - I²C bus digital diagnostics (including DC and AC load detection)

- Full fault protection
- DC offset detection
- · Four independent short circuit protection
- Clipping detector pin with selectable threshold (2 %/10 %)
- · Standby/mute pin
- Linear thermal shutdown with multiple thermal warning
- ESD protection

Description

The TDA7563A is a new BCD technology Quad Bridge type of car radio amplifier in Flexiwatt27 & PowerSO36 packages specially intended for car radio applications.

Thanks to the DMOS output stage the TDA7563A has a very low distortion allowing a clear powerful sound. Among the features, its superior efficiency performance coming from the internal exclusive structure, makes it the most suitable device to simplify the thermal management in high power sets.

The dissipated output power under average listening condition is in fact reduced up to 50% when compared to the level provided by conventional class AB solutions.

This device is equipped with a full diagnostics array that communicates the status of each speaker through the I²C bus.

Table 1. Device summary

Order code	Package	Packing		
TDA7563A	Flexiwatt27 (vertical)	Tube		
TDA7563AH	Flexiwatt27 (horizontal)	Tube		
TDA7563ASM	Flexiwatt27 (SMD)	Tube		
TDA7563ASMTR	Flexiwatt27 (SMD)	Tape and reel		
TDA7563APD	PowerSO36 (slug up)	Tube		

Contents TDA7563A

Contents

1	Bloc	k, pins connection and application diagrams
2	Elec	trical specifications
	2.1	Absolute maximum ratings
	2.2	Thermal data
	2.3	Electrical characteristics
	2.4	Electrical characteristics curves
3	Diag	nostics functional description1
	3.1	Turn-on diagnostic
	3.2	Permanent diagnostics
4	Outp	out DC offset detection
	4.1	AC diagnostic
	4.2	Multiple faults
	4.3	Faults availability
5	Thei	mal protection
6	Fast	muting
7	I2C I	bus
	7.1	I2C programming/reading sequences
	7.2	I2C bus interface
	7.3	Data validity
	7.4	Start and stop conditions
	7.5	Byte format
	7.6	Acknowledge
8	Soft	ware specifications24
9	Exa	mples of bytes sequence
10	Pacl	kage information
11	Revi	ision history

TDA7563A List of tables

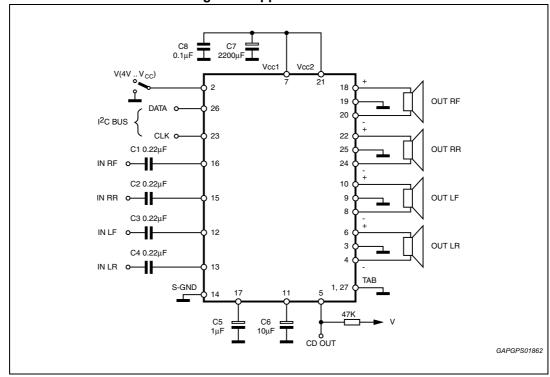
List of tables

Table 1.	Device summary	. 1
Table 2.	Absolute maximum ratings	. 7
Table 3.	Thermal data	. 7
Table 4.	Electrical characteristics	. 7
Table 5.	Double fault table for turn on diagnostic	
	IB1	
Table 7.	IB2	25
Table 8.	DB1	25
	DB2	
Table 10.	DB3	27
Table 11.	DB4	28
Table 12.	Document revision history	34

List of figures TDA7563A

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Application circuit	
Figure 3.	Pin connections - Flexiwatt27 (Top view)	. 6
Figure 4.	Pin connections - PowerSO36 (Top view)	6
Figure 5.	Quiescent current vs. supply voltage	10
Figure 6.	Output power vs. supply voltage (4 Ω)	10
Figure 7.	Output power vs. supply voltage (2 Ω)	10
Figure 8.	Distortion vs. output power (4 Ω , STD)	10
Figure 9.	Distortion vs. output power (4 Ω , HI-EFF)	11
Figure 10.	Distortion vs. output power (2 Ω , STD)	11
Figure 11.	Distortion vs. frequency (4 Ω)	11
Figure 12.	Distortion vs. frequency (2 Ω)	11
Figure 13.	Crosstalk vs. frequency	11
Figure 14.	Supply voltage rejection vs. frequency	11
Figure 15.	Power dissipation and efficiency vs. output power (4 Ω, STD, SINE)	12
Figure 16.	Power dissipation and efficiency vs. output power (4 Ω , HI-EFF, SINE)	12
Figure 17.	Power dissipation vs. average output power (audio program simulation, 4 Ω)	12
Figure 18.	Power dissipation vs. average output power (audio program simulation, 2 Ω)	12
Figure 19.	Turn-on diagnostic: working principle	
Figure 20.	SVR and output behavior (case 1: without turn-on diagnostic)	14
Figure 21.	SVR and output pin behavior (case 2: with turn-on diagnostic)	
Figure 22.	Thresholds for short to GND/V _S	14
Figure 23.	Thresholds for short across the speaker/open speaker	
Figure 24.	Thresholds for line-drivers	15
Figure 25.	Restart timing without diagnostic enable (permanent) - Each 1ms time,	
	a sampling of the fault is done	
Figure 26.	Restart timing with diagnostic enable (permanent)	
Figure 27.	Current detection: Load impedance Z vs. output peak voltage	
Figure 28.	Thermal foldback diagram	
Figure 29.	Data validity on the I2C bus	
Figure 30.	Timing diagram on the I2C bus	
Figure 31.	Timing acknowledge clock pulse	
Figure 32.	Flexiwatt27 (horizontal) mechanical data and package dimensions	
Figure 33.	Flexiwatt27 (vertical) mechanical data and package dimensions	
Figure 34.	Flexiwatt27 (SMD) mechanical data and package dimensions	
Figure 35.	PowerSO36 (slug up) mechanical data and package dimensions	33



1 Block, pins connection and application diagrams

CLK DATA VCC1 VCC2 ST-BY/MUTE CD_OUT OUT RF+ 1 OUT RF-6 IN RR OUT RR+ 2 OUT RR-IN LF OUT LF+ K OUT LF-OUT LR+ \mathbb{I} OUT LR-AC_GND TAB S_GND SVR RF RR LF LR PW_GND GAPGPS01861

Figure 1. Block diagram

Figure 2. Application circuit

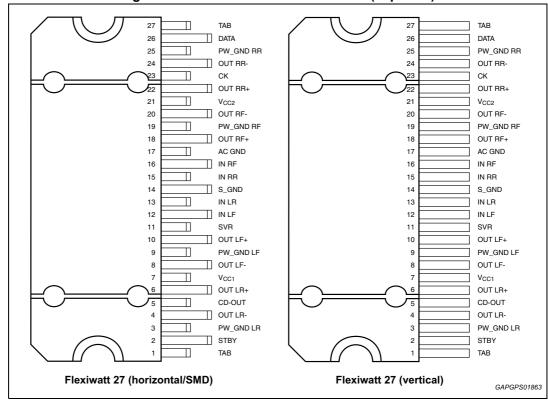
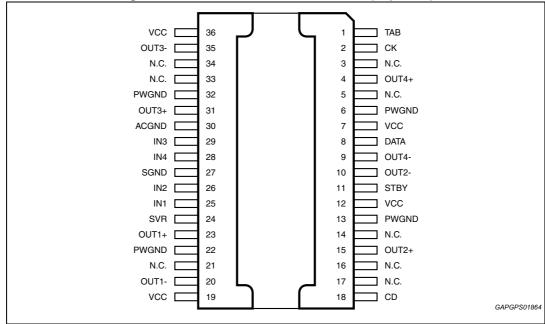



Figure 3. Pin connections - Flexiwatt27 (Top view)

2 Electrical specifications

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{op}	Operating supply voltage	18	V
V _S	DC supply voltage	28	V
V _{peak}	Peak supply voltage (for t = 50 ms)	50	V
V _{CK}	CK pin voltage	6	V
V _{DATA}	Data pin voltage	6	V
I _O	Output peak current (not repetitive t = 100 ms)	8	Α
Io	Output peak current (repetitive f > 10 Hz)	6	Α
P _{tot}	Power dissipation T _{case} = 70 °C	85	W
T _{stg} , T _j	Storage and junction temperature	-55 to 150	°C

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	PowerSO36	Flexiwatt 27	Unit
R _{th j-case}	Thermal resistance junction-to-case Max	1	1	°C/W

2.3 Electrical characteristics

Refer to the test circuit, V_S = 14.4 V; f = 1 kHz; R_L = 4 Ω ; T_{amb} = 25 °C unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Parameter Test condition		Тур.	Max.	Unit
Power ar	nplifier					
V _S	Supply voltage range	-	8	-	18	V
I _d	Total quiescent drain current	-	-	170	300	mA
	Output power	Max. power (V _S = 15.2 V, square wave input (2-Vrms))	-	50	-	W
Po		THD = 10-% THD = 1-%	25 20	28 22	-	W W
10		R_L = 2- Ω ; EIAJ (V_S = 13.7-V) R_L = 2- Ω ; THD 10-% R_L = 2- Ω ; THD 1-% R_L = 2- Ω ; max power	55 40 32 60	68 50 40 75	-	W W W

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		P_O = 1 to 10 W; STD MODE HE MODE; P_O = 1.5 W HE MODE; P_O = 8 W	-	0.015 0.01 0.1	0.1 0.1 0.5	% % %
THD	Total harmonic distortion	P _O = 1-10 W, f = 10kHz; STD mode	-	0.15	0.5	%
טחו		$R_L = 2 \Omega$; HE MODE; $P_O = 3W$	-	0.02	0.5	%
		G_V = 12 dB; STD mode V_O = 0.1 to 5 V_{RMS}	-	0.015	0.1	%
C _T	Cross talk	$f = 1 \text{ kHz to } 10 \text{ kHz}, R_g = 600 \Omega$	50	60	-	dB
R _{IN}	Input impedance	-	60	100	130	kΩ
G _{V1}	Voltage gain 1 (default)	-	25	26	27	dB
ΔG _{V1}	Voltage gain match 1	-	-1		1	dB
G _{V2}	Voltage gain 2	-	11	12	13	dB
ΔG _{V2}	Voltage gain match 2	-	-1	-	1	dB
E _{IN1}	Output noise voltage 1	R _v = 600 O: G _v = 12 dB		35	-	μV
E _{IN2}	Output noise voltage 2			11	-	μV
SVR	Supply voltage rejection	$f = 100$ Hz to 10 kHz; $V_r = 1$ Vpk; $R_g = 600$ Ω	50	70	-	dB
BW	Power bandwidth	-	100	-	-	kHz
A _{SB}	Standby attenuation	-	90	110		dB
I _{SB}	Standby current	V _{standby} = 0	-	1	10	μA
A _M	Mute attenuation	-	80	100		dB
Vos	Offset voltage	Mute & Play	-60	0	60	mV
V_{AM}	Min. supply mute threshold	-	7	7.5	8	V
T _{ON}	Turn on delay	D2/D1 (IB1) 0 to 1	-	5	20	ms
T _{OFF}	Turn off delay	D2/D1 (IB1) 1 to 0	-	5	20	ms
V _{SBY}	Standby/mute pin for standby	-	0	-	1.5	V
V _{MU}	Standby/mute pin for mute	-	3.5	-	5	V
CMRR	Input CMRR	V_{CM} = 1 Vpk-pk; Rg = 0 Ω	-	55	-	dB
V _{OP}	Standby/mute pin for operating		7	-	Vs	V
	Standby/muta nin averant	V _{standby/mute} = 8.5 V	-	20	40	μA
I _{MU}	Standby/mute pin current	V _{standby/mute} < 1.5 V	-	0	5	μA
CD _{LK}	Clip det. high leakage current	·		0	5	μA
CD _{SAT}	Clip det. saturation voltage	CD on; I _{CD} = 1 mA	-	-	300	mV

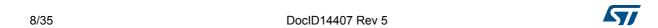
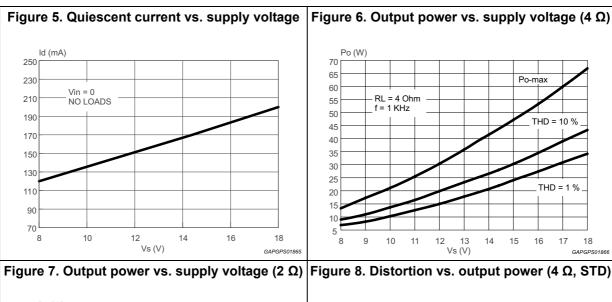
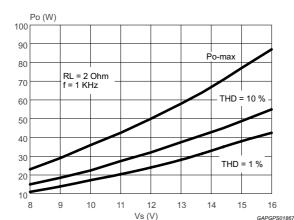
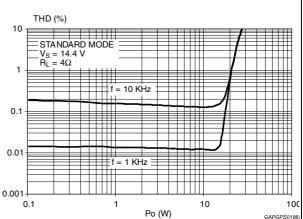


Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
00	OF LA TUDIE	D0 (IB1) = 1	5	10	15	%
CD _{THD} Clip det. THD level		D0 (IB1) = 0	1	2	3	%
Turn on o	diagnostics 1 (Power amplifier i	node)				
Pgnd	Short to GND det. (below this limit, the output is considered in short circuit to GND)		-	-	1.2	V
Pvs	Short to Vs det. (above this limit, the output is considered in short circuit to VS)		Vs -1.2	-	-	V
Pnop	Normal operation thresholds. (within these limits, the output is considered without faults).	Power amplifier in standby	1.8	-	Vs -1.8	V
Lsc	Shorted load det.		-	-	0.5	Ω
Lop	Open load det.		130	-	-	Ω
Lnop	Normal load det.		1.5	-	70	Ω
Turn on o	diagnosticS 2 (Line driver mode	2)	•		'	
Pgnd	Short to GND det. (below this limit, the output is considered in short circuit to GND)	Power amplifier in standby	-	-	1.2	٧
Pvs	Short to Vs det. (above this limit, the output is considered in short circuit to VS)	-	Vs -1.2	-	-	V
Pnop	Normal operation thresholds. (within these limits, the output is considered without faults).	-	1.8	-	Vs -1.8	V
Lsc	Shorted load det.	-		-	1.5	Ω
Lop	Open load det.	-	400	-	-	Ω
Lnop	Normal load det.	-	4.5	-	200	Ω
Permane	nt diagnostics 2 (Power amplifi	er mode or line driver mode)				
Pgnd	Short to GND det. (below this limit, the output is considered in short circuit to GND)		-	-	1.2	V
Pvs	Short to Vs det. (above this limit, the output is considered in short circuit to Vs)	Power amplifier in mute or play, one or more short circuits protection activated	Vs -1.2	-	-	V
Pnop	Normal operation thresholds. (within these limits, the output is considered without faults).		1.8	-	Vs -1.8	V
ı	Shorted load dat	Power amplifier mode	-	-	0.5	Ω
L _{SC}	Shorted load det.	Line driver mode	-	-	1.5	Ω


THD = 10 %


THD = 1 %


Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
V _O	Offset detection	Power amplifier in play, STD mode AC input signals = 0	±1.5	±2	±2.5	V	
I _{NL}	Normal load current detection	V < (V 5)pk	500	-	-	mA	
I _{OL}	Open load current detection	V _O < (V _S -5)pk	-	-	250	mA	
I ² C bus interface							
S _{CL}	Clock frequency	-	-	-	400	kHz	
V _{IL}	Input low voltage	-	-	-	1.5	V	
V _{IH}	Input high voltage	-	2.3	-	-	V	

2.4 **Electrical characteristics curves**

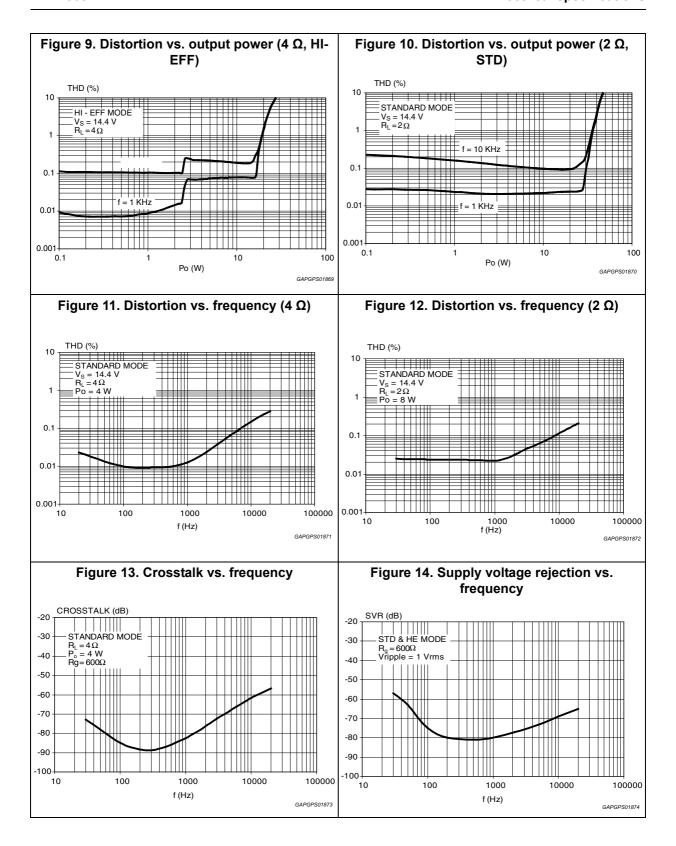


Figure 15. Power dissipation and efficiency vs. output power (4 Ω , STD, SINE)



Figure 16. Power dissipation and efficiency vs. output power (4 Ω , HI-EFF, SINE)

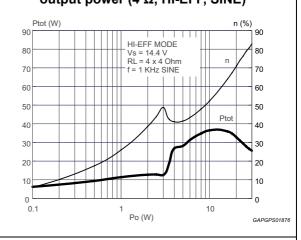


Figure 17. Power dissipation vs. average output power (audio program simulation, 4Ω)

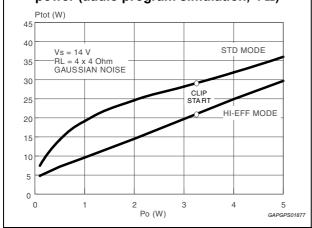
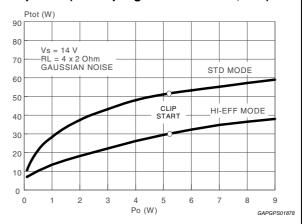



Figure 18. Power dissipation vs. average output power (audio program simulation, 2 Ω)

3 Diagnostics functional description

3.1 Turn-on diagnostic

It is activated at the turn-on (standby out) under I²C bus request. Detectable output faults are:

- Short to GND
- Short to Vs
- Short across the speaker
- · Open speaker

To verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse (Figure~19) is internally generated, sent through the speaker(s) and sunk back. The Turn On diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I^2 C reading).

If the "standby out" and "diagnostic enable" commands are both given through a single programming step, the pulse takes place first (power stage still in standby mode, low, outputs = high impedance).

Afterwards, when the amplifier is biased, the PERMANENT diagnostic takes place. The previous Turn On state is kept until a short appears at the outputs.

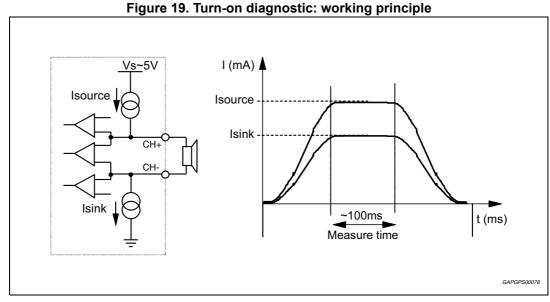
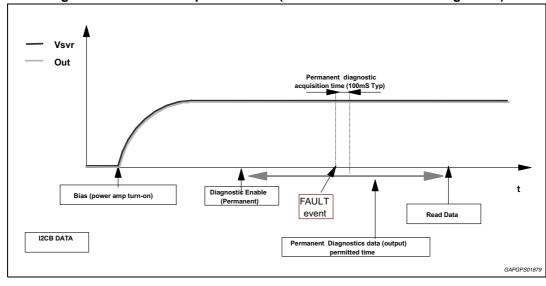
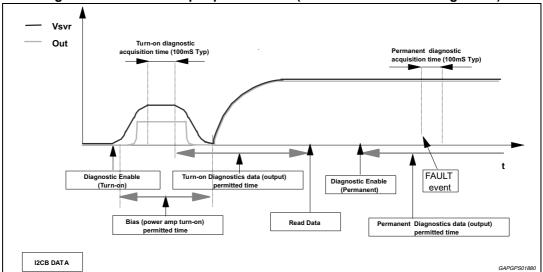
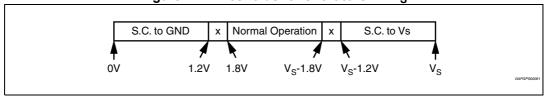


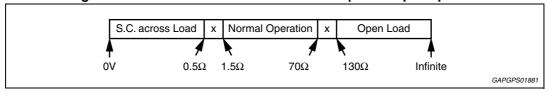
Figure 20 and 21 show SVR and OUTPUT waveforms at the turn-on (standby out) with and without TURN-ON DIAGNOSTIC.

14/35


Figure 20. SVR and output behavior (case 1: without turn-on diagnostic)

The information related to the outputs status is read and memorized at the end of the current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for SHORT TO GND / $V_{\rm S}$ the fault-detection thresholds remain unchanged from 26 dB to 12 dB gain setting. They are as follows:TDA7563A


Figure 22. Thresholds for short to GND/V_S

DocID14407 Rev 5

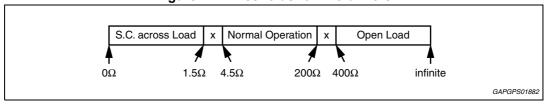

Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows:

Figure 23. Thresholds for short across the speaker/open speaker

If the Line-Driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows:

Figure 24. Thresholds for line-drivers

3.2 Permanent diagnostics

Detectable conventional faults are:

- Short to GND
- Short to Vs
- Short across the speaker

The following additional features are provided:

Output offset detection

The TDA7563A has 2 operating statuses:

- RESTART mode. The diagnostic is not enabled. Each audio channel operates independently from each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (*Figure 25*). Restart takes place when the overload is removed.
- 2. DIAGNOSTIC mode. It is enabled via I²C bus and self activates if an output overload (such to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (*Figure* 26):
 - To avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns back active.
 - Instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started.
 - After a diagnostic cycle, the audio channel interested by the fault is switched to RESTART mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated

- by an I²C reading. This is to ensure continuous diagnostics throughout the carradio operating time.
- To check the status of the device a sampling system is needed. The timing is chosen at microprocessor level (over half a second is recommended).

Figure 25. Restart timing without diagnostic enable (permanent) - Each 1ms time, a sampling of the fault is done

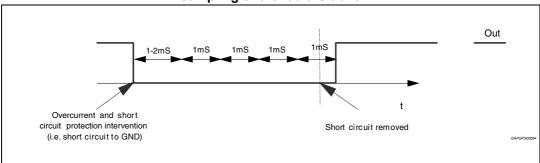
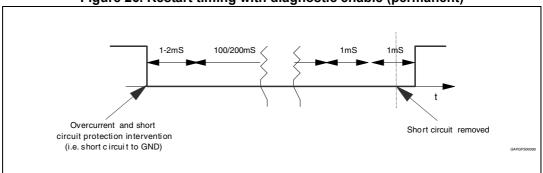



Figure 26. Restart timing with diagnostic enable (permanent)

4 Output DC offset detection

Any DC output offset exceeding \pm 2 V are signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating.

This diagnostic has to be performed with low-level output AC signal (or Vin = 0).

The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command):

- START = Last reading operation or setting IB1 D5 (OFFSET enable) to 1
- STOP = Actual reading operation

Excess offset is signalled out if it is persistent for all the assigned testing time. This feature is disabled if any overload leading to activation of the short-circuit protection occurs in the process.

4.1 AC diagnostic

It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitively (AC) coupled loads.

This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, as follows:

lout > 500 mApk = NORMAL STATUS
lout < 250 mApk = OPEN TWEETER</pre>

To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such as to determine an output current higher than 500 mApk in normal conditions and lower than 250 mApk should the parallel tweeter be missing.

The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2<D2>) up to the I²C reading of the results (measuring period). To confirm presence of tweeter, it is necessary to find at least 3 current pulses over 500 mA over all the measuring period, else an "open tweeter" message will be issued.

The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off.

Figure 27 shows the Load Impedance as a function of the peak output voltage and the relevant diagnostic fields.

This feature is disabled if any overload leading to activation of the short-circuit protection occurs in the process.

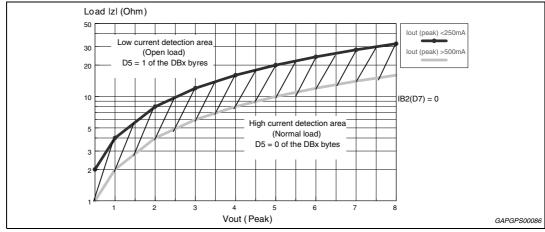


Figure 27. Current detection: Load impedance |Z| vs. output peak voltage

Multiple faults 4.2

When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I²C reading and faults removal, provided that the diagnostic is enabled. This is true for both kinds of diagnostic (Turn on and Permanent).

The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 ohm speaker unconnected is considered as double fault.

	S. GND (so)	S. GND (sk)	S. Vs	S. Across L.	Open L.	
S. GND (so)	S. GND	S. GND	S. Vs + S. GND	S. GND	S. GND	
S. GND (sk)	1	S. GND	S. Vs	S. GND	Open L. (*)	
S. Vs	1	1	S. Vs	S. Vs	S. Vs	
S. Across L.	1	1	1	S. Across L.	N.A.	
Open L.	1	1	1	1	Open L. (*)	

Table 5. Double fault table for turn on diagnostic

S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2 outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More precisely, in Channels LF and RR, so = CH+, sk = CH-; in Channels LR and RF, so = CH-, sk = CH+.

In Permanent Diagnostic the table is the same, with only a difference concerning Open Load(*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive Car Radio Turn on).

4.3 Faults availability

All the results coming from I²C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out.

To guarantee always resident functions, every kind of diagnostic cycles (Turn on, Permanent, Offset) will be reactivated after any I^2C reading operation. So, when the micro reads the I^2C , a new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is removed and micro reads I^2C . The short to Gnd is still present in bytes, because it is the result of the previous cycle. If another I^2C reading operation occurs, the bytes do not show the short). In general to observe a change in Diagnostic bytes, two I^2C reading operations are necessary.

Thermal protection TDA7563A

5 Thermal protection

Thermal protection is implemented through thermal foldback (Figure 28).

Thermal foldback begins limiting the audio input to the amplifier stage as the junction temperatures rise above the normal operating range. This effectively limits the output power capability of the device thus reducing the temperature to acceptable levels without totally interrupting the operation of the device.

The output power will decrease to the point at which thermal equilibrium is reached. Thermal equilibrium will be reached when the reduction in output power reduces the dissipated power such that the die temperature falls below the thermal foldback threshold. Should the device cool, the audio level will increase until a new thermal equilibrium is reached or the amplifier reaches full power. Thermal foldback will reduce the audio output level in a linear manner.

Three Thermal warnings are available through the I²C bus data.

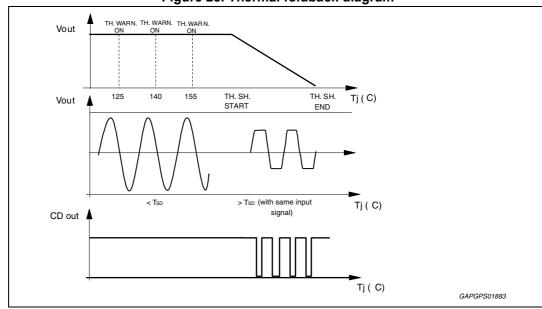


Figure 28. Thermal foldback diagram

TDA7563A Fast muting

6 Fast muting

The muting time can be shortened to less than 1.5 ms by setting (IB2) D5 = 1. This option can be useful in transient battery situations (i.e. during car engine cranking) to quickly turnoff the amplifier for avoiding any audible effects caused by noise/transients being injected by preamp stages. The bit must be set back to "0" shortly after the mute transition.

I2C bus TDA7563A

7 I^2C bus

7.1 I²C programming/reading sequences

A correct turn on/off sequence respectful of the diagnostic timings and producing no audible noises could be as follows (after battery connection):

TURN-ON: PIN2 > 7V --- 10ms --- (STANDBY OUT + DIAG ENABLE) --- 500 ms (min) --- MUTING OUT

TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STANDBY IN) --- 10ms --- PIN2 = 0

Car Radio Installation: PIN2 > 7V --- 10ms DIAG ENABLE (write) --- 200 ms --- I²C read (repeat until All faults disappear).

OFFSET TEST: Device in Play (no signal) -- OFFSET ENABLE - $30ms - I^2C$ reading (repeat I^2C reading until high-offset message disappears).

7.2 I²C bus interface

Data transmission from microprocessor to the TDA7563A and vice versa takes place through the 2 wires I²C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

7.3 Data validity

As shown by Figure 29, the data on the SDA line must be stable during the high period of the clock

The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

7.4 Start and stop conditions

As shown by *Figure 30* a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH.

The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

7.5 Byte format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

TDA7563A I2C bus

7.6 Acknowledge

The transmitter^(*) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see *Figure 31*). The receiver^(**) has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

(*) Transmitter

- master (μP) when it writes an address to the TDA7563A
- slave (TDA7563A) when the μP reads a data byte from TDA7563A

(**) Receiver

- slave (TDA7563A) when the μP writes an address to the TDA7563A
- master (µP) when it reads a data byte from TDA7563A

Figure 29. Data validity on the I²C bus

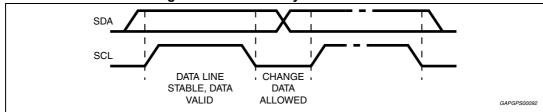


Figure 30. Timing diagram on the I²C bus

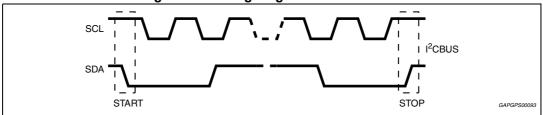
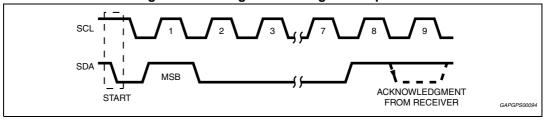



Figure 31. Timing acknowledge clock pulse

8 Software specifications

All the functions of the TDA7563A are activated by $\ensuremath{\text{I}}^2\text{C}$ interface.

The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from μP to TDA7563A) or read instruction (from TDA7563A to μP).

Chip address

D7				D			D0	0	
	1	1	0	1	1	0	0	Х	D8 Hex

X = 0 Write to device

X = 1 Read from device

If R/W = 0, the μ P sends 2 "Instruction Bytes": IB1 and IB2.

Table 6. IB1

Bit	Instruction decoding bit
D7	0
D6	Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0)
D5	Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0)
D4	Front Channel Gain = 26dB (D4 = 0) Gain = 12dB (D4 = 1)
D3	Rear Channel Gain = 26dB (D3 = 0) Gain = 12dB (D3 = 1)
D2	Mute front channels (D2 = 0) Unmute front channels (D2 = 1)
D1	Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1)
D0	CD 2% (D0 = 0) CD 10% (D0 = 1)

Table 7. IB2

Bit	Instruction decoding bit
D7	0
D6	0
D5	Normal muting time (D5 = 0) Fast muting time (D5 = 1)
D4	Standby on - Amplifier not working - (D4 = 0)
	Standby off - Amplifier working - (D4 = 1)
D3	Power amplifier mode diagnostic (D3 = 0)
	Line driver mode diagnostic (D3 = 1)
D2	Current Detection Diagnostic Enabled (D2 =1)
	Current Detection Diagnostic Defeat (D2 =0)
D1	Right Channel Power amplifier working in standard mode (D1 = 0)
	Power amplifier working in high efficiency mode (D1 = 1)
D0	Left Channel Power amplifier working in standard mode (D0 = 0)
	Power amplifier working in high efficiency mode (D0 = 1)

If R/W = 1, the TDA7563A sends 4 "Diagnostics Bytes" to μP : DB1, DB2, DB3 and DB4.

Table 8. DB1

Bit	Instruction decoding bit
D7	Thermal warning active (D7 = 1), T _J = 155°C
D6	Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1)
D5	Channel LF Current Detection Output peak current <250mA - Output load (D5 = 1) Output peak current >500mA - Output load (D5 = 0)
D4	Channel LF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)
D3	Channel LF Normal load (D3 = 0) Short load (D3 = 1)
D2	Channel LF Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1)
D1	Channel LF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
D0	Channel LF No short to GND (D1 = 0) Short to GND (D1 = 1)

