imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TDA8296

Digital global standard low IF demodulator for analog TV and FM radio

Rev. 1 — 3 March 2011

Product data sheet

1. General description

The TDA8296 is an alignment-free digital multistandard vision and sound low IF signal PLL demodulator for positive and negative video modulation including AM and FM mono sound processing. It can be used in all countries worldwide for M/N, B/G/H, I, D/K, L and L-accent standard. CVBS and SSIF/mono audio are provided via two DACs. FM radio preprocessing is included for simple interfacing with demodulator/stereo decoder backends.

The IC is especially suited for the application with the NXP Silicon Tuner TDA1827x.

All the processing is done in the digital domain.

The chip has an 'easy programming' mode to make the I²C-bus protocol very simple. In principle, only one bit sets the proper standard with recommended content. However, if this is not suitable, free programming is always possible.

Note: Register 06h has to be reprogrammed to new value C4h (see <u>Section 9.2</u> and <u>Section 9.3.1</u>).

2. Features and benefits

- Digital IF demodulation for all analog TV standards worldwide (M/N, B/G/H, D/K, I, L and L-accent standard)
- Multistandard true synchronous demodulation with active carrier regeneration
- Alignment-free
- 16 MHz typical reference frequency input (from low IF tuner) or operating as crystal oscillator
- Internal PLL synthesizer which allows the use of a low-cost crystal (typically 16 MHz)
- Especially suited for the NXP Silicon Tuner TDA1827x
- No SAW filter needed
- Low application effort and external component count in combination with the TDA1827x
- Simple upgrade of TDA8295 possible
- 12-bit low power IF ADC on chip running with 54 MHz or 27 MHz
- Two 10-bit DACs on chip for CVBS and SSIF or audio
- Easy programming for I²C-bus
- High flexibility due to various I²C-bus programming registers
- I²C-bus interface and I²C-bus feed-through for tuner programming
- Four I²C-bus addresses selectable via two external pins

- Gated IF AGC acting on black level by using H/V PLL or peak IF AGC (I²C-bus selectable)
- Internal digital logarithmic IF AGC amplifier with up to 48 dB gain and 68 dB control range
- Peak search tuner IF AGC for optimal adaptive drive of the IF ADC
- Switchable IF PLL and IF AGC loop bandwidths
- Precise AFC and lock detector
- Accurate group delay equalization for all standards
- Very robust IF demodulator coping with adverse field conditions
- Wide PLL pull-in range up to ±1 660 kHz (I²C-bus selectable)
- CVBS and SSIF or audio output with simple postfilter (capacitor only)
- CVBS gain levelling stage to provide nearly constant signal amplitude during over modulation
- Video equalizer with eight settings
- Nyquist filter in video baseband
- Excellent video S/N (typically 60 dB weighted)
- High selectivity video low-pass filter for all standards
- Low video into sound crosstalk
- SSIF AGC
- Sound performance comparable to QSS single reference concepts
- AM/FM mono sound demodulator
- Switchable de-emphasis
- Excellent FM sound
- Good AM sound
- High FM Deviation mode for China
- Preprocessing of FM radio (mono and stereo) with highly selective digital band-pass filter
- No ceramic filter or external components needed for FM radio
- FM radio available in mono
- Automatic or forced mute for mono sound
- Automatic or forced blank for video
- Mostly digital FIR filter implementation (NSC notches and video low-pass filters)
- Three GPIO pins
- Power-On Reset (POR) block for reliable power-up behavior
- Very low total power dissipation (typically 150 mW)
- No power sequence requirement
- Standby mode (typically 5 mW)
- 40-pin HVQFN package
- CMOS technology (0.090 μm 1.2 V and 3.3 V)

3. Applications

- TV applications
- Recording
- PC TV applications

TDA8296

4. Quick reference data

Table 1. Quick reference data

Power supplies 3.3 V, 1.2 V; $T_{amb} = 25 \text{ °C}$; PC/SC1 for L and M = 10 dB, all others 13 dB; nominal residual picture carrier of 3 % for L/L', 10 % for M, 10 % for B/G, 12.5 % for D/K, 20 % for I; FM/AM modulation = 54 %, 1 kHz modulation frequency; measured in application PCB (see Figure 22 and Figure 23) with 16 MHz crystal frequency, terminated with 75 Ω (CVBS) and 1 k Ω (SSIF/audio). Operation mode set via easy programming (Section 9.3.1), otherwise stated. Low IF input signal at -3dB full scale, input frequencies as defined under row header IF input.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Power supp	bly					
V _{DD(1V2)}	supply voltage (1.2 V)	digital and analog	1.1	1.2	1.3	V
V _{DD(3V3)}	supply voltage (3.3 V)	digital and analog	3.0	3.3	3.6	V
I _{DD(tot)(1V2)}	total supply current (1.2 V)		-	49	-	mA
I _{DD(tot)(3V3)}	total supply current (3.3 V)		-	65	-	mA
P _{tot}	total power dissipation	default settings; f _s = 54 MHz at ADC; DAC application in accordance to <u>Figure 23</u>	-	270	-	mW
		$f_s = 54$ MHz at ADC; DAC application in accordance to Figure 24	-	150	-	mW
		Standby mode	-	5	8	mW
IF input						
V _{i(p-p)}	peak-to-peak input voltage	for full-scale ADC input (0 dBFS)	0.7	0.8	0.9	V
V _i	input voltage	operational input related to ADC full scale; all standards; sum of all signals	-3	-3	-3	dBFS
f _i	input frequency	PC / SC1				
		M/N standard	-	5.40 / 0.90	-	MHz
		B standard	-	6.40 / 0.90	-	MHz
		G/H standard	-	6.75 / 1.25	-	MHz
		l standard	-	7.25 / 1.25	-	MHz
		D/K standard	-	6.85 / 0.35	-	MHz
		L standard	-	6.75 / 0.25	-	MHz
		L-accent standard	-	1.25 / 7.75	-	MHz
		FM radio	-	1.25	-	MHz
Carrier reco	overy FPLL					
B _{-3dB(cl)}	closed-loop –3 dB bandwidth	wide	-	60	-	kHz
Δf_{pullin}	pull-in frequency range		[1] -	±830	-	kHz
m _{over(PC)}	picture carrier over modulation index	black for L/L-accent standard; flat field white else	115	117	-	%
IF demodula	ation (video equalizer in Flat	mode)				
$\alpha_{sup(stpb)}$	stop-band suppression	video low-pass filter (M/N, B/G/H, I, D/K, L/L-accent standard)	-	-60	-	dB
t _{ripple(GDE)}	group delay equalizer ripple time	peak value for B/G/H half, D/K half, I flat, M (FCC) full, L/L-accent full standard	-	20	40	ns

Digital global standard low IF demodulator for analog TV and FM radio

Table 1. Quick reference data ...continued

Power supplies 3.3 V, 1.2 V; $T_{amb} = 25 \, ^{\circ}C$; PC/SC1 for L and M = 10 dB, all others 13 dB; nominal residual picture carrier of 3 % for L/L', 10 % for M, 10 % for B/G, 12.5 % for D/K, 20 % for I; FM/AM modulation = 54 %, 1 kHz modulation frequency; measured in application PCB (see Figure 22 and Figure 23) with 16 MHz crystal frequency, terminated with 75 Ω (CVBS) and 1 k Ω (SSIF/audio). Operation mode set via easy programming (Section 9.3.1), otherwise stated. Low IF input signal at -3dB full scale, input frequencies as defined under row header IF input.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
CVBS output						
V _{o(p-p)}	peak-to-peak output voltage	negative PC modulation (all standards except L/L-accent); 75 Ω DC load; sync-white modulation; 90 % (nominal)	0.9	1.0	1.1	V
		positive PC modulation (L/L-accent standard); 75 Ω DC load; sync-white modulation; 97 % (nominal)	0.9	1.0	1.1	V
B _{video(-3dB)}	–3 dB video bandwidth	overall video response; CVBS equalizer flat				
		all standards except M/N	4.7	4.85	-	MHz
		M/N standard	3.8	3.9	-	MHz
$\alpha_{resp(f)}$	frequency response	video equalizer; 8 equally spaced settings; value at 3.9 MHz	-5	-	+4.5	dB
G _{dif}	differential gain	"ITU-T J.63 line 330"	-	1.5	5	%
φdif	differential phase	"ITU-T J.63 line 330"	-	1.0	3	deg
(S/N) _w	weighted signal-to-noise ratio	all standards; unified weighting filter (<i>"ITU-T J.61"</i>); PC at –6 dBFS	57	60	-	dB
SSIF/mono s	ound output					
$V_{o(SSIF)(RMS)}$	RMS SSIF output voltage	1 k Ω DC or AC load; no modulation; PC / SC1 = 13 dB				
		M standard	105	115	127	mV
		B standard	97	104	116	mV
		G/H standard	97	104	116	mV
		D/K standard	89	96	106	mV
		l standard	93	100	111	mV
		L standard	89	96	106	mV
		L-accent standard	89	96	106	mV
		FM radio (single carrier)	94	103	115	mV
V _{o(AF)(RMS)}	RMS AF output voltage	1 k Ω DC or AC load				
		M standard; 54 % modulation degree (±13.5 kHz FM deviation before pre-emphasis)	98	116	135	mV
		B, G/H, I, D/K standard; 54 % modulation degree (±27 kHz FM deviation before pre-emphasis)	107	126	144	mV
α _{hr(AF)}	AF headroom	before clipping; 1 k Ω DC or AC load				
		M standard; related to ± 25 kHz peak deviation before pre-emphasis	-	7	-	dB
		B, G/H, I, D/K standard; related to ±50 kHz peak deviation before pre-emphasis	-	7	-	dB
DA8296		All information provided in this document is subject to legal disclaimers.		(NXP B.V. 2011. A	l rights res
Product data al	hand	Poy 1 2 Morob 2011				4 0

Digital global standard low IF demodulator for analog TV and FM radio

Table 1. Quick reference data ...continued

Power supplies 3.3 V, 1.2 V; $T_{amb} = 25 \, ^{\circ}C$; PC/SC1 for L and M = 10 dB, all others 13 dB; nominal residual picture carrier of 3 % for L/L', 10 % for M, 10 % for B/G, 12.5 % for D/K, 20 % for I; FM/AM modulation = 54 %, 1 kHz modulation frequency; measured in application PCB (see Figure 22 and Figure 23) with 16 MHz crystal frequency, terminated with 75 Ω (CVBS) and 1 k Ω (SSIF/audio). Operation mode set via easy programming (Section 9.3.1), otherwise stated. Low IF input signal at -3dB full scale, input frequencies as defined under row header IF input.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	FM; for 50 kHz deviation before pre-emphasis (25 kHz for M standard)	-	0.15	0.3	%
		AM; m = 80 %	-	0.5	1	%
B _{AF(-3dB)}	-3 dB AF bandwidth	AM	20	27	-	kHz
		FM	40	50	-	kHz
$(S/N)_{w(AF)}$	AF weighted signal-to-noise ratio	via internal mono sound demodulator; <i>"ITU-R BS.468-4"</i> ; FM mode related to 27 kHz deviation before pre-emphasis; 10 % residual PC; SC1; color bar picture	52	54	-	dB
		via internal mono sound demodulator; (audio gain +6 dB) <i>"ITU-R BS.468-4"</i> ; AM; m = 54 %; 3 % residual PC; SC1; color bar picture	[2] 40	44	-	dB

[1] The pull-in range can be doubled to ± 1660 kHz by I²C-bus register like described in Table 16. Then the AFC read-out has 256 steps.

[2] To set audio gain to +6 dB for internal sound demodulation, register 22h has to be programmed to 08h.

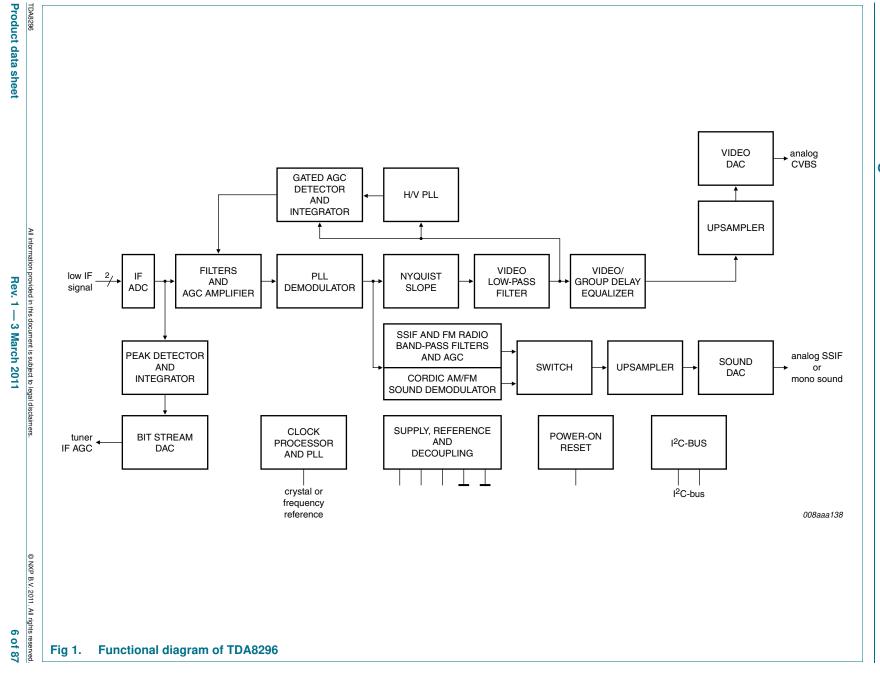
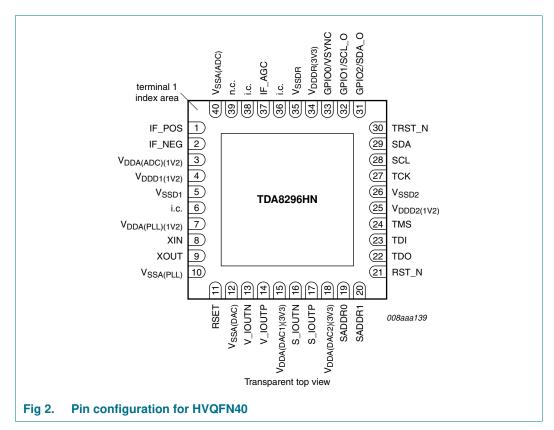

5. Ordering information

Table 2.Ordering information

Type number	Package		
	Name	Description	Version
TDA8296HN	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6 \times 6 \times 0.85$ mm	SOT618-1


Digital global standard low IF demodulator for analog TV and FM radio **TDA8296**

6. Functional diagram

7. Pinning information

7.1 Pinning

Table 3.Pin allocation table

Pin	Symbol	Pin	Symbol
1	IF_POS	2	IF_NEG
3	V _{DDA(ADC)(1V2)}	4	V _{DDD1(1V2)}
5	V _{SSD1}	6	i.c.
7	V _{DDA(PLL)(1V2)}	8	XIN
9	XOUT	10	V _{SSA(PLL)}
11	RSET	12	V _{SSA(DAC)}
13	V_IOUTN	14	V_IOUTP
15	V _{DDA(DAC1)(3V3)}	16	S_IOUTN
17	S_IOUTP	18	V _{DDA(DAC2)(3V3)}
19	SADDR0	20	SADDR1
21	RST_N	22	TDO
23	TDI	24	TMS
25	V _{DDD2(1V2)}	26	V _{SSD2}
27	ТСК	28	SCL
29	SDA	30	TRST_N
		- 1	

Digital global standard low IF demodulator for analog TV and FM radio

Table 3.	Pin allocation table continued		
Pin	Symbol	Pin	Symbol
31	GPIO2/SDA_O	32	GPIO1/SCL_O
33	GPIO0/VSYNC	34	V _{DDDR(3V3)}
35	V _{SSDR}	36	i.c.
37	IF_AGC	38	i.c.
39	n.c.	40	V _{SSA(ADC)}
die pad	global ground at backside contact	·	

7.2 Pin description

Symbol	Pin	Type ^[1]	Description
Reset			
RST_N	21	I	The RST_N input is asynchronous and active LOW, and clears the TDA8296. When RST_N goes LOW, the circuit immediately enters its Reset mode and normal operation will resume four XIN signal falling edges later after RST_N returns HIGH. Internal register contents are all initialized to their default values. The minimum width of RST_N at LOW level is four XIN clock periods.
Reference			
XIN	8	I	Crystal oscillator input pin. In Slave mode (typically), the XIN input simply receives a 16 MHz clock signal (f_{REF}) from an external device (typically from the TDA1827x). In Oscillator mode, a fundamental 16 MHz (typically) crystal is connected between pin XIN and pin XOUT.
XOUT	9	0	Crystal oscillator output pin. In Slave mode, the XOUT output is not connected. In Oscillator mode a fundamental 16 MHz (typically) crystal is connected between pin XIN and pin XOUT.
l ² C-bus			
SDA	29	I/O, OD	I^2C -bus bidirectional serial data. SDA is an open-drain output and therefore requires an external pull-up resistor (typically 4.7 k Ω).
SCL	28	I	$\rm I^2C$ -bus clock input. SCL is nominally a square wave with a maximum frequency of 400 kHz. It is generated by the system I^2C-bus master.
SADDR0	19	I	These two bits allow to select four possible I ² C-bus addresses, and therefore
SADDR1	20	I	permits to use several TDA8296 in the same application and/or to avoid conflict with other ICs. The complete I ² C-bus address is: 1, 0, 0, SADDR1, 0, 1, SADDR0, R/W (see also <u>Section 9.1</u>).
I ² C-bus feed-tl	hrough s	switch or GPI	0
GPIO2/SDA_O	31	I/O, OD	SDA_O is equivalent to SDA but can be 3-stated by I ² C-bus programming. It is the output of a switch controlled by I2CSW_EN parameter. SDA_O is an open-drain output and therefore requires an external pull-up resistor (see <u>Section 9.3.18</u>).
GPIO1/SCL_O	32	I/O, OD	SCL_O is equivalent to SCL input but can be 3-stated by I ² C-bus programming. SCL_O is an open-drain output and therefore requires an external pull-up resistor (see <u>Section 9.3.18</u>). For proper functioning of the I ² C-bus feed-through, a capacitor C = 33 pF to GND must be added (see <u>Section 13.6</u>).
V-sync or GPI	0		
GPIO0/VSYNC	33	I/O, OD	vertical synchronization pulse needed for the NXP Silicon Tuner (see Section 9.3.18)
Tuner IF AGC			
IF_AGC	37	I/O, OD, T	tuner IF AGC output
TDA8296			All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserv

Digital global standard low IF demodulator for analog TV and FM radio

		oncontinu	
Symbol	Pin	Type <mark>[1]</mark>	Description
Boundary sca			
TMS	24	l	Test mode select provides the logic levels needed to change the TAP controller from state to state during the boundary scan test.
TRST_N	30	Ι	Test reset is used to reset the TAP controller (active LOW). Grounding is mandatory in Functional mode.
ТСК	27	I	Test clock is used to drive the TAP controller.
TDI	23	I	Test data input is the serial data input for the test data instruction.
TDO	22	0	Test data output is the serial test data output pin. The data is provided on the falling edge of TCK.
ADC			
IF_POS	1	AI	IF positive analog input for internal ADC
IF_NEG	2	AI	IF negative analog input for internal ADC
DAC			
V_IOUTP	14	AO	positive analog current output of the video output
V_IOUTN	13	AO	negative analog current output of the video output
S_IOUTP	17	AO	positive analog current output of the SSIF/mono sound output
S_IOUTN	16	AO	negative analog current output of the SSIF/mono sound output
RSET	11	I	External bias setting of the DACs. An external resistor (1 k Ω typical) has to be connected between RSET and the analog ground of the board. This resistor generates the current into the DACs and also defines the full scale output current. The total parasitic capacitance seen externally from the RSET pin has to be lower than 20 pF.
Supplies and g	grounds		
V _{DDA(DAC1)(3V3)}	15	PS	DAC1 (video DAC) and DAC reference module analog supply voltage (3.3 V typical
V _{DDA(DAC2)(3V3)}	18	PS	DAC2 (sound DAC) analog supply voltage (3.3 V typical)
V _{SSA(DAC)}	12	GND	DAC reference module analog ground supply voltage (0 V typical)
V _{DDA(ADC)(1V2)}	3	PS	IF ADC analog supply voltage (1.2 V typical)
V _{SSA(ADC)}	40	GND	ADC analog ground supply voltage (0 V typical)
V _{DDD1(1V2)}	4	PS	ADC, PLL and DACs digital supply voltage (1.2 V typical)
V _{SSD1}	5	GND	ADC, PLL and DACs digital ground supply voltage (0 V typical)
V _{DDA(PLL)(1V2)}	7	PS	crystal oscillator and clock PLL analog supply voltage (1.2 V typical)
V _{SSA(PLL)}	10	GND	crystal oscillator and clock PLL analog ground supply voltage (0 V typical)
V _{DDD2(1V2)}	25	PS	core digital supply voltage (1.2 V typical)
V _{SSD2}	26	GND	core digital ground supply voltage (0 V typical)
V _{DDDR(3V3)}	34	PS	ring digital supply voltage (3.3 V typical)
V _{SSDR}	35	GND	ring digital ground supply voltage (0 V typical)
V _{SS}	die pad	GND	
Other pins	-		
i.c.	6, 36, 38	I	internally connected; connect to ground
n.c.	39	I	not connected

[1] The pin types are defined in <u>Table 5</u>.

Table 5.	Pin type description
Туре	Description
AI	analog input
AO	analog output
GND	ground
Ι	digital input
I/O	digital input and output
0	digital output
OD	open-drain output
PS	power supply
Т	3-state

8. Functional description

8.1 IF ADC

The low IF spectrum (1 MHz to 10 MHz) from the Silicon Tuner TDA1827x is fed symmetrically to the 12-bit IF ADC of the TDA8296, where it is sampled with 54 MHz or 27 MHz. All the anti-aliasing filtering is already done in the Silicon Tuner.

8.2 Filters

The internal filters permit to reduce the sampling rate to 13.5 MHz, and to form a complex signal to ease the effort of further signal processing. Before this, the DC offset (coming from the ADC) is removed.

In addition, standard dependent notch filters for the adjacent sound carriers protect the picture carrier PLL from malfunctioning and avoid disturbances (i.e. moire) becoming visible in the video output.

8.3 PLL demodulator

The second-order PLL is the core block of the whole IC. It is very robust against adverse field conditions, like excessive over modulation, no residual carrier presence or unwanted phase or frequency modulation of the picture carrier. The PLL output is the synchronously demodulated channel.

The AFC data is available via the I²C-bus.

8.4 Nyquist filter, video low-pass filter, video and group delay equalizer, video leveling

The afore-mentioned down-mixed complex signal at the mixer CORDIC output, already consisting of the demodulated content of the picture carrier together with the sound carriers (the so-called intercarriers), is running through a Nyquist filter to get a flat video response and is made real.

Afterwards, a video low-pass filter suppresses the sound carriers and other disturbers.

Next comes the equalizer circuit to remove the transmitter group delay predistortion.

TDA8296

A video leveling stage follows, which brings the output within the SCART specification (±3 dB overall), despite heavy over modulation. The response time is made very slow.

Finally, a video equalizer allows to compensate the perhaps non-flat frequency response from the tuner or to change the overall video response according to customer wish (i.e. peaking or early roll-off).

8.5 Upsampler and video DAC

The filtered and compensated CVBS signal is connected to the oversampled 10-bit video DAC ($f_s = 108 \text{ MHz}$) via an interpolation stage. The strong oversampling replaces a former complicated LCR postfiltering by a simple first-order RC low-pass filter to remove the DAC image frequencies sufficiently. This holds also for the sound DAC, described in <u>Section 8.6</u>.

8.6 SSIF/mono sound processing

The complex signal is routed via a band-pass, AGC and interpolation filter to the 10-bit sound DAC for the recovery of the second sound carriers (SSIF). A very sharp band-pass filter at 5.5 MHz is added in the FM Radio mode to remove neighbor channels. This also eases the dynamic burden on the following ADC in the demodulator/decoder chip. The afore-mentioned high-selectivity band-pass, which replaces the former ceramic filter, is located behind a frequency shifter. In there, the incoming wanted FM radio channel from the Silicon Tuner is changed from 1.25 MHz to 5.5 MHz.

Moreover, the complex signal is demodulated in a linear CORDIC detector and low-pass filtered to attenuate the video spectrum and the second sound carrier, respectively other disturbers above the intercarrier. The output of the linear CORDIC (phase information) is differentiated for getting the demodulated FM audio. The AM demodulation is executed in a synchronous fashion by using a narrow-band PLL demodulator.

A de-emphasis filter is implemented for FM standards, before the audio is interpolated to 108 MHz as in the CVBS case.

The mono audio is made available in the sound DAC via an I²C-bus controlled selector in case the intercarrier path is not used for driving an external stereo demodulator.

However, if the mono audio output has to meet the SCART specification, an external cheap operational amplifier with 12 dB gain becomes necessary, because the low supply voltage for the TDA8296 doesn't allow such high levels like 2 V (RMS) maximum.

8.7 Tuner IF AGC

This AGC controls the tuner IF AGC amplifier in the TDA1827x in such a way, that the IF ADC is always running with a permanent headroom of 3 dB for the sum of all signals present at the ADC input. This ensures an always optimal exploitation of the dynamic range in the IF ADC.

The detection is done in peak Search mode during a field period. The attack time is made much faster than the decay time in order to avoid transient clipping effects in the IF ADC. This can happen during channel change or airplane flutter conditions.

TDA8296

The above wideband, slowly acting AGC loop (uncorrelated) is of first-order integral action. It is closed via the continuous tuner IF AGC amplifier in the Silicon Tuner via a bit stream DAC (PWM signal at 13.5 MHz, 27 MHz or 54 MHz) and an external and uncritical first-order RC low-pass.

8.8 Digital IF AGC

Common to both IF AGC concepts is the peak search algorithm as long as the H/V PLL is not locked. This is of advantage for the acquisition by avoiding hang-ups due to excessive overloading, so being able to leave the saturated condition by reducing the gain.

Two Detection modes are made available in the IC via I^2 C-bus.

• Black level gated AGC:

The first mode uses an IF AGC detector which is gated with a very robust and well-proven H/V sync PLL block on board. Gating occurs on the black level (most of the time on the back porch) of the video signal and the control is delivered after an error integration and exponential weighting to the internal IF AGC amplifier. This IF AGC amplifier, in fact a multiplier, has a control range of -20 dB to +48 dB.

• Peak AGC:

A fast attack and slow decay action cares for a good and nearly clip-free transient behavior. This proved to be more robust for non-standard signals, like sync clipping along the transmitter/receiver chain.

With respect to the IF AGC speed generally, only the gated black level or peak sync digital IF AGC can be made fast. However the peak search tuner IF AGC, used for positive modulation standards (L and L-accent standard), is rather slow because the VITS is present only once in a field.

The correlated or narrow-band AGC loop, closed via the continuous IF AGC amplifier in the TDA8296, is of first-order integral action and settles at a constant IF input level with a permanent headroom of 12 dB (picture carrier). This headroom is needed for the own sound carriers and the leaking neighbor (N - 1) spectrum.

8.9 Clock generation

Finally, either an external reference frequency (i.e. from the Silicon Tuner) or an own on-chip crystal oscillator in the TDA8296 feeds the internal PLL synthesizer to generate the necessary clock signals.

9. I²C-bus control

9.1 Protocol of the I²C-bus serial interface

The TDA8296 internal registers are accessible by means of the I²C-bus serial interface. The SDA bidirectional pin is used as the data input/output pin and SCL as the clock input pin. The highest SCL speed is 400 kHz.

9.1.1 Write mode

S	BYTE 1	Α	BYTE 2	А	BYTE 3	Α		BYTE n	Α	Р
start	address 0	ack	start index	ack	data 1	ack		data n	ack	stop
001aad38										
Fig 3. I ² C-bus Write mode										

Table 6.Address format

7	6	5	4	3	2	1	0
1	0	0	SADDR1	0	1	SADDR0	R/W

Table 7. I²C-bus transfer description

Field	Bit	Description
S	-	START condition
Byte 1	7 to 5	device address
	4	SADDR1
	3 and 2	device address
	1	SADDR0
	0	R/W = 0 for write action
A	-	acknowledge
Byte 2	7 to 0	start index
A	-	acknowledge
Byte 3	7 to 0	data 1
А	-	acknowledge
:		
Byte n	7 to 0	data n
А	-	acknowledge
Р	-	STOP condition

S	BYTE 1	А	BYTE 2	А	BYTE 3	А	Р
start	1000 0100	ack	0000 0001	ack	0000 0010	ack	stop

001aah355

a. Address 84h, write 02h in register 01h

S	BYTE 1	А	BYTE 2	А	BYTE 3	А	BYTE 4	А	Р
start	1000 0100	ack	0000 0010	ack	0000 0101	ack	0000 0100	ack	stop

001aah356

b. Address 84h, write 05h in register 02h and 04h in register 03h

Fig 4. Examples I²C-bus Write mode

TDA8296

Digital global standard low IF demodulator for analog TV and FM radio

9.1.2 Read mode

S	BYTE 1	А	BYTE 2	А	S	BYTE 3	А	BYTE 4	А	BYTE n	А	Р
start	address 0	ack	start index	ack	start	address 1	ack	value 1	ack	 value n	ack	stop
												001aad423

Fig 5. I²C-bus Read mode

Table 8. I²C-bus transfer description

Field	Bit	Description
S	-	START condition
Byte 1	7 to 5	device address
	4	SADDR1
	3 and 2	device address
	1	SADDR0
	0	R/W = 0 for write action
А	-	acknowledge
Byte 2	7 to 0	start index
А	-	acknowledge
S	-	START condition (without stop before)
Byte 3	7 to 5	device address
	4	SADDR1
	3 and 2	device address
	1	SADDR0
	0	R/W = 1 for read action
А	-	acknowledge
Byte 4	7 to 0	value 1
А	-	acknowledge
:		
Byte n	7 to 0	value n
А	-	acknowledge
Р	-	STOP condition

_													
	s	BYTE 1	А	BYTE 2	А	s	BYTE 3	А	BYTE 4	А	BYTE 5	А	Р
s	start	1000 0100	ack	0000 0010	ack	start	1000 0101	ack	0000 0101	ack	0000 0100	ack	stop
	001aah357												
	Address 84h, read register 02h with value 05h and read register 03h with value 04h												
Fig	J 6.	Example I ² C-bus Read mode											

9.2 Register overview

The TDA8296 internal registers are accessible by means of the l^2 C-bus serial interface as described in <u>Section 9.1</u>. In <u>Table 10</u> and <u>Table 9</u> an overview of all the registers is given, the register description can be found in <u>Section 9.3</u>.

Table 9.	I ² C-bus register reference			
Index	Name	I ² C-bus access	Default value	Reference
00h	STANDARD	R/W	01h	Table 11
01h	EASY_PROG	R/W	00h	Table 12
02h	DIV_FUNC	R/W	04h	Table 14
03h	ADC_HEADR	R/W	01h	Table 15
04h	PC_PLL_FUNC	R/W	24h	Table 16
05h	SSIF_MUTE	R/W	04h	Table 33
06h	reserved	R/W	48h ^[1]	-
07h	reserved	R/W	84h <mark>^[1]</mark>	-
08h	reserved	R/W	08h ^[1]	-
09h	DTO_PC_LOW	R/W	9Ah	Table 17
0Ah	DTO_PC_MID	R/W	99h	Table 17
0Bh	DTO_PC_HIGH	R/W	99h	Table 17
0Ch	DTO_SC_LOW	R/W	3Dh	Table 19
0Dh	DTO_SC_MID	R/W	20h	Table 19
0Eh	DTO_SC_HIGH	R/W	59h	Table 19
0Fh	FILTERS_1	R/W	21h	Table 21
10h	FILTERS_2	R/W	31h	Table 22
11h	GRP_DELAY	R/W	01h	Table 23
12h	D_IF_AGC_SET_1	R/W	A0h	Table 24
13h	D_IF_AGC_SET_2	R/W	90h	Table 25
14h	reserved	R/W	67h ^[1]	-
15h	T_IF_AGC_SET	R/W	88h	Table 26
16h	T_IF_AGC_LIM	R/W	F0h	Table 27
17h	T_IF_AGC_FORCE	R/W	3Fh	Table 28
18h	reserved	R/W	02h ^[1]	-
19h	reserved	R/W	88h ^[1]	-
1Ah	reserved	R/W	80h ^[1]	-
1Bh	reserved	R/W	00h ^[1]	-
1Ch	V_SYNC_DEL	R/W	6Fh	Table 29
1Dh	CVBS_SET	R/W	31h	Table 30
1Eh	CVBS_LEVEL	R/W	73h	Table 31
1Fh	CVBS_EQ	R/W	10h	Table 32
20h	SOUNDSET_1	R/W	21h	Table 34
21h	SOUNDSET_2	R/W	22h	Table 35
22h	SOUND_LEVEL	R/W	08h	Table 36
23h	SSIF_LEVEL	R/W	AFh	Table 37

TDA8296

Digital global standard low IF demodulator for analog TV and FM radio

Table 9.	I ² C-bus register referencec	ontinued		
Index	Name	I ² C-bus access	Default value	Reference
24h	ADC_SAT	R	-	<u>Table 38</u>
25h	AFC	R	-	Table 39
26h	HVPLL_STAT	R	-	Table 41
27h	D_IF_AGC_STAT	R	-	<u>Table 42</u>
28h	T_IF_AGC_STAT	R	-	Table 43
29h	reserved	R	-	-
2Ah	reserved	R/W	00h ^[1]	-
2Bh	ALT_FILT_COEF	R/W	00h ^[1]	Table 44
2Ch	reserved	R	-	-
2Dh	SSIF_AGC_STAT_REG	R	-	Table 45
2Eh	not used	R/W	00h	-
2Fh	IDENTITY	R	-	Table 46
30h	CLB_STDBY	R/W	01h	Table 47
31h	reserved	R/W	00h[1]	-
32h	reserved	R	-	-
33h	ADC_CTL	R/W	24h	Table 48
34h	ADC_CTL_2	R/W	05h	Table 49
35h	VIDEODAC_CTL	R/W	7Eh	Table 50
36h	AUDIODAC_CTL	R/W	00h	Table 51
37h	DAC_REF_CLK_CTL	R/W	40h	Table 52
38h	reserved	R/W	20h[1]	-
39h to 3Bh	not used	R/W	00h	-
3Ch	reserved	R/W	00h ^[1]	-
3Dh	not used	R/W	00h	-
3Eh	reserved	R/W	61h <mark>11</mark>	-
3Fh	PLL_REG07	R/W	00h	Table 53
40h	PLL_REG08	R/W	1Ah	Table 53
41h	PLL_REG09	R/W	02h	Table 53
42h	PLL_REG10	R/W	01h	Table 53
43h	reserved	R/W	00h ^[1]	-
44h	GPIOREG_0	R/W	1Bh	Table 54
45h	GPIOREG_1	R/W	C1h	Table 55
46h	GPIOREG_2	R/W	07h	Table 57
47h to 4Ah	reserved	R	-	-
4Bh	GD_EQ_SECT1_C1	R/W	00h	Table 58
4Ch	GD_EQ_SECT1_C2	R/W	00h	Table 58
4Dh	GD_EQ_SECT2_C1	R/W	00h	Table 58
4Eh	GD_EQ_SECT2_C2	R/W	00h	Table 58
4Fh	GD_EQ_SECT3_C1	R/W	00h	Table 58
50h	GD_EQ_SECT3_C2	R/W	00h	Table 58
51h	GD_EQ_SECT4_C1	R/W	00h	Table 58

TDA8296

Digital global standard low IF demodulator for analog TV and FM radio

Index	Name	I ² C-bus access	Default value	Reference
52h	GD_EQ_SECT4_C2	R/W	00h	Table 58
53h to 56h	not used	R/W	00h	-
57h	CVBS_EQ_COEF0_LOW	R/W	00h	Table 60
58h	CVBS_EQ_COEF0_HIGH	R/W	00h	Table 60
59h	CVBS_EQ_COEF1_LOW	R/W	00h	Table 60
5Ah	CVBS_EQ_COEF1_HIGH	R/W	00h	Table 60
5Bh	CVBS_EQ_COEF2_LOW	R/W	00h	Table 60
5Ch	CVBS_EQ_COEF2_HIGH	R/W	00h	Table 60
5Dh	CVBS_EQ_COEF3_LOW	R/W	00h	Table 60
5Eh	CVBS_EQ_COEF3_HIGH	R/W	00h	Table 60
5Fh	CVBS_EQ_COEF4_LOW	R/W	00h	Table 60
60h	CVBS_EQ_COEF4_HIGH	R/W	00h	Table 60
61h	CVBS_EQ_COEF5_LOW	R/W	00h	Table 60
62h	CVBS_EQ_COEF5_HIGH	R/W	04h	Table 60
63h to 66h	not used	R/W	00h	-
67h	reserved	R/W	FEh ^[1]	-
68h	reserved	R/W	0Fh[1]	-
69h	reserved	R/W	FAh ^[1]	-
6Ah	reserved	R/W	0Fh[1]	-
6Bh	reserved	R/W	EFh ^[1]	-
6Ch	reserved	R/W	0Fh[1]	-
6Dh	reserved	R/W	DDh ^[1]	-
6Eh	reserved	R/W	0Fh[1]	-
6Fh	reserved	R/W	BEh <mark>[1]</mark>	-
70h	reserved	R/W	0Fh[1]	-
71h	reserved	R/W	8Ah[1]	-
72h	reserved	R/W	0Fh[1]	-
73h	reserved	R/W	32h ^[1]	-
74h	reserved	R/W	0Fh[1]	-
75h	reserved	R/W	6Fh[1]	-
76h	reserved	R/W	0Eh[1]	-
77h	reserved	R/W	F4h ^[1]	-
78h	reserved	R/W	0Ah ^[1]	-
79h to 7Bh	not used	R/W	00h	-
7Ch to 9Ch	reserved	R/W	00h ^[1]	-
9Dh to A0h	not used	R/W	00h	-
A1h and A2h	reserved	R/W	00h ^[1]	-

[1] This register must not be written with values other than default.

ð	Index	Name	7 (MSB)	6	5	4	3	2	1	0 (LSB)
	00h	STANDARD	STANDARD[7:0]							
	01h	EASY_PROG	0	0	0	0	0	0	0	ACTIVE
	02h	DIV_FUNC	T_IF_SEL[1:0]		0	0	0	POL_DET	VID_MOD	IF_SWAP
	03h	ADC_HEADR	0	0	0	0	ADC_HEAD	PR[3:0]		
	04h	PC_PLL_FUNC	PC_PLL_BW[4:0]					PLL_ON	PULL_IN	0
	05h	SSIF_MUTE	0	0	SSIF_AFC_\	WIN[3:0]			SSIF_MUTE_ TYPE	SSIF_MUTE CTRL
	06h <mark>[1]</mark>	reserved	0	1	0	0	1	0	0	0
	07h	reserved	1	0	0	0	0	1	0	0
Alli	08h	reserved	0	0	0	0	1	0	0	0
nformat	09h	DTO_PC_LOW	DTO_PC[7:0]							
tion pro	0Ah	DTO_PC_MID	DTO_PC[15:8]							
wided i	0Bh	DTO_PC_HIGH	DTO_PC[23:16]							
in this c	0Ch ^[2]	DTO_SC_LOW	DTO_SC[7:0]							
locume	0Dh <mark>[3]</mark>	DTO_SC_MID	DTO_SC[15:8]							
ent is si	0Eh <mark>[3]</mark>	DTO_SC_HIGH	DTO_SC[23:16]							
ubject t	0Fh	FILTERS_1	VID_FILT[2:0]			NOTCH_FILT	Γ[4:0]			
o legal disc	10h ^[4]	FILTERS_2	0	0	VID_FILT_ LOW_RIP	1	SBP[3:0]			
laimers	11h	GRP_DELAY	GD_EQ_CTRL	0	0	GRP_DEL[4:	0]			
	12h	D_IF_AGC_SET_1	1	D_IF_AGC_ MODE	1	0	0	0	0	0
	13h	D_IF_AGC_SET_2	1	D_IF_AGC_B	3W[6:0]					
	14h	reserved	0	1	1	0	1	1	1	1
	15h	T_IF_AGC_SET	POL_TIF	T_IF_AGC_S	PEED[6:0]					
	16h	T_IF_AGC_LIM	UP_LIM[3:0]				LOW_LIM[3	:0]		
© NX	17h	T_IF_AGC_FORCE	T_FORCE	T_FORCE_V	AL[6:0]					
P B.V. :	18h	reserved	0	0	0	0	0	1	0	0
2011. A	19h	reserved	1	0	0	0	1	0	0	0
All righ	1Ah	reserved	1	0	0	0	0	0	0	0

18 of 87

TDA8296

Digital global standard low IF demodulator for analog TV and FM radio

ndex	Name	7 (MSB)	6	5	4	3	2	1	0 (LSB)
lCh	V_SYNC_DEL	VS_WIDTH[1:0]		VS_POL	VS_DEL[4:0]				
Dh	CVBS_SET	0	0	1 <u>[5]</u>	1	CVBS_EQ_ CTRL	FOR_BLK	AUTO_BLK	1
Eh	CVBS_LEVEL	CVBS_LVL[7:0]							
1Fh	CVBS_EQ	CVBS_EQ[7:0]							
20h	SOUNDSET_1	0	AM_FM_SND	[1:0]	DEEMPH[4:0]]			
21h	SOUNDSET_2	0	SSIF_AGC_ TC	SSIF_AGC_ CTRL	HD_DK	FOR_MUTE	AUTO_ MUTE	SSIF_SND[1:0)]
22h	SOUND_LEVEL	0	0	0	SND_LVL[4:0]			
23h	SSIF_LEVEL	SSIF_LVL[7:0]							
24h	ADC_SAT	ADC_SAT[7:0]							
25h	AFC	AFC[7:0]							
26h	HVPLL_STAT	-	-	NOISE_DET	MAC_DET	FIDT	V_LOCK	F_H_LOCK	N_H_LOCK
27h	D_IF_AGC_STAT	D_IF_AGC_STAT	[7:0]						
28h	T_IF_AGC_STAT	T_IF_AGC_STAT	[7:0]						
29h	reserved	-	-	-	-	-	-	-	-
2Ah	reserved	0	0	0	0	0	0	0	0
2Bh	ALT_FILT_COEF	0	0	0	0	0	0	ALT_FILT_CC	EF[1:0]
2Ch	reserved	-	-	-	-	-	-	-	-
2Dh	SSIF_AGC_STAT	SSIF_AGC_STAT	[7:0]						
2Eh	not used	0	0	0	0	0	0	0	0
2Fh	IDENTITY	IDENTITY[7:0]							
30h	CLB_STDBY	0	0	0	0	0	0	STDBY	CLB
31h	reserved	0	0	0	0	0	0	0	0
32h	reserved	-	-	-	-	-	-	-	-
33h	ADC_CTL	0	0	1	0	DCIN	1	SLEEP	PD_ADC
34h	ADC_CTL_2	0	0	0	0	0	1	0	AD_SR54M
35h	VIDEODAC_CTL	0	B_DA_V[5:0]						PD_DA_V
36h	AUDIODAC_CTL	0	B_DA_S[5:0]						PD_DA_S
37h	DAC_REF_CLK_CTL	0	1	0	0	0	0	0	PD_DA_RE

TDA8296 Product data sheet

Rev. 1 — 3 March 2011

19 of 87

TDA8296

Digital global standard low IF demodulator for analog TV and FM radio

NXP Semiconductors

	=
20	rights
of 87	reserved.

Rev. 1 — 3 March 2011

Pro	TDA	Table
roduct)A8296	Inde
		38h
data shee		39h t 3Bh
ēt		3Ch
		3Dh
		3Eh
		2Eh

Table 10. I²C-bus registers ...continued

Index	Name	7 (MSB)	6	5	4	3	2	1	0 (LSB)
38h	reserved ^[6]	0	0	1	0	0	0	0	0
39h to 3Bh	not used	0	0	0	0	0	0	0	0
3Ch	reserved	0	0	0	0	0	0	0	0
3Dh	not used	0	0	0	0	0	0	0	0
3Eh	reserved ^[6]	0	1	1	0	0	0	0	1
3Fh	PLL_REG07 ^[6]	0	NSEL7	0	0	0	0	0	0
40h	PLL_REG08 ^[6]	MSEL[7:0]							
41h	PLL_REG09 ^[6]	NSEL[6:0]							0
42h	PLL_REG10 ⁶	0	0	0	PSEL[4:0]			
43h	reserved	0	0	0	0	0	0	0	0
44h	GPIOREG_0	GP1_CF[3:0]	GP1_CF[3:0] GP0_CF[3:0]						
45h	GPIOREG_1	I2CSW_EN	I2CSW_ON	0	0	GP2_CF	[3:0]		
46h	GPIOREG_2	0	0	0	0	0	GP2_VAL	GP1_VAL	GP0_VAL
47h to 4Ah	reserved	-	-	-	-	-	-	-	-
4Bh	GD_EQ_SECT1_C1	GD_EQ_SEC	GD_EQ_SECT1_C1[7:0]						
4Ch	GD_EQ_SECT1_C2	GD_EQ_SEC	Г1_C2[7:0]						
4Dh	GD_EQ_SECT2_C1	GD_EQ_SEC	Γ2_C1[7:0]						
4Eh	GD_EQ_SECT2_C2	GD_EQ_SEC	Γ2_C2[7:0]						
4Fh	GD_EQ_SECT3_C1	GD_EQ_SEC	F3_C1[7:0]						
50h	GD_EQ_SECT3_C2	GD_EQ_SEC	F3_C2[7:0]						
51h	GD_EQ_SECT4_C1	GD_EQ_SEC	F4_C1[7:0]						
52h	GD_EQ_SECT4_C2	GD_EQ_SEC	F4_C2[7:0]						
53h to 56h	not used	0	0	0	0	0	0	0	0
57h	CVBS_EQ_COEF0_ LOW	CVBS_EQ_CO	DEF0[7:0]						
58h	CVBS_EQ_COEF0_ HIGH	0	0	0	0	CVBS_E	EQ_COEF0[11:8]		
59h	CVBS_EQ_COEF1_ LOW	CVBS_EQ_CC	DEF1[7:0]						

Digital global standard low IF demodulator for analog TV and FM radio

TDA8296	dex Nam	9	7 (MSB)	6	5	4	3	2	1	0 (LSB)
TDA8296 Inc 5A 5B	h CVB HIGH	S_EQ_COEF1_	0	0	0	0	CVBS_E	EQ_COEF1[11:8	3]	
5B	Bh CVBS LOW	S_EQ_COEF2_	CVBS_EQ_CC	DEF2[7:0]						
5C	Ch CVB HIGH	S_EQ_COEF2_	0	0	0	0	CVBS_E	EQ_COEF2[11:8	3]	
5D	h CVB LOW	S_EQ_COEF3_	CVBS_EQ_CC	DEF3[7:0]						
5E	h CVB HIGH	S_EQ_COEF3_	0	0	0	0	CVBS_E	EQ_COEF3[11:8	3]	
5F ≞	h CVBS	S_EQ_COEF4_	CVBS_EQ_CC	DEF4[7:0]						
ormation pre	h CVBS HIGH	S_EQ_COEF4_	0	0	0	0	CVBS_E	EQ_COEF4[11:8	3]	
provided in thi	h CVBS LOW	S_EQ_COEF5_	CVBS_EQ_CC	DEF5[7:0]						
All information provided in this document is subject to legal disclaimers	h CVB HIGH	S_EQ_COEF5_	0	0	0	0	CVBS_E	EQ_COEF5[11:8	3]	
ocument is subject to le	ih to not u ih	sed	0	0	0	0	0	0	0	0
ega 67	'h reser	ved	1	1	1	1	1	1	1	0
^{disclain} 681	h reser	ved	0	0	0	0	1	1	1	1
^{eg} 69	h reser	ved	1	1	1	1	1	0	1	0
6A	h reser	ved	0	0	0	0	1	1	1	1
6B	3h reser	ved	1	1	1	0	1	1	1	1
6C	Ch reser	ved	0	0	0	0	1	1	1	1
6D)h reser	ved	1	1	0	1	1	1	0	1
6E	h reser	ved	0	0	0	0	1	1	1	1
_⊚ 6F	h reser	ved	1	0	1	1	1	1	1	0
© NXP B.V. 2011. All rights reserve	h reser	ved	0	0	0	0	1	1	1	1
· 2011	h reser	ved	1	0	0	0	1	0	1	0
≜ 72I	h reser	ved	0	0	0	0	1	1	1	1
ghts reserve	h reser	ved	0	0	1	1	0	0	1	0

Digital global standard low IF demodulator for analog TV and FM radio

TDA8296

rights reserved. 21 of 87

Table 10. I²C-bus registers ...continued

	•								
Index	Name	7 (MSB)	6	5	4	3	2	1	0 (LSB)
74h	reserved	0	0	0	0	1	1	1	1
75h	reserved	0	1	1	0	1	1	1	1
76h	reserved	0	0	0	0	1	1	1	0
77h	reserved	1	1	1	1	0	1	0	0
78h	reserved	0	0	0	0	1	0	1	0
79h to 7Bh	not used	0	0	0	0	0	0	0	0
7Ch to 9Ch	reserved	0	0	0	0	0	0	0	0
	not used	0	0	0	0	0	0	0	0
A0h A1h and A2h	reserved	0	0	0	0	0	0	0	0

n provided in this Rev. 1 --document is 3 March 2011

<u>7</u>

Product data sheet

Register 06h has to be reprogrammed to new value C4h. [1]

[2] Register 0Ch has to be reprogrammed to new value 00h.

[3] For M/N standard (ADC clock at 54 MHz) register 0Dh and 0Eh have to be reprogrammed to new value 55h.

[4] For M/N standard use narrow SSIF band-pass filter (SBP[3:0] = 0100).

subject to legal disclaimer [5] For L/L-accent standard the bit has to be programmed to 0.

[6] These registers have to be programmed to the alternative value in Table 66, if an other frequency is required than 54 MHz for ADC sample frequency.

9.3 Register description

If registers (or bit groups contained in registers) are programmed with invalid values, i.e. values different from those described in the tables below, the default behavior is chosen for the related block. Other settings than described in the tables are not allowed.

9.3.1 Standard setting with easy programming

With the implemented 'easy programming', only one bit sets the TV or FM radio standard with recommended register content. If not suitable however, any of these registers can be written with other settings. With the rising edge of the bit ACTIVE, some of the registers 02h to 23h are programmed internally with the standard dependent settings according to Table 13. The content of registers with address 24h and higher is untouched.

Table 11. STANDARD register (address 00h) bit description Legend: * = default value.

Bit	Symbol	Access	Value	Description
7 to 0	o 0 STANDARD[7:0 R/W]			TV or FM radio standard selection (easy programming)
			0000 0001*	M/N standard
			0000 0010	B standard
			0000 0100	G/H standard
			0000 1000	l standard
			0001 0000	D/K standard
			0010 0000	L standard
			0100 0000	L-accent standard
			1000 0000	FM radio

In addition to application specific software settings following general recommendation should be used (deviating from easy programming values):

- Register 06h: new value C4h
- Register 0Ch: new value 00h
- M/N standard:
 - Register 10h: use narrow SSIF band-pass filter (SBP[3:0] = 0100)
 - Register 0Dh and 0Eh: new value 55h

Remark: When using alternative ADC sampling frequencies the DTO settings have to be adapted accordingly.

 Table 12.
 EASY_PROG register (address 01h) bit description

 Legend: * = default value.

Bit	Symbol	Access	Value	Description
7 to 1	-	R/W	000 0000*	not used
0	ACTIVE	R/W		With the rising edge of this bit, the registers 02h to 23h are programmed with the standard dependent settings (see <u>Table 13</u>).
			0*	no action
			1	no action
			0 to 1	activate easy programming

All information provided in this document is subject to legal disclaimers.

TDA8296

© NXP B.V. 2011. All rights reserved.

Example: To set the device to B standard e.g., please do the following steps.

- 1. Write 02h to register STANDARD, address 00h (set B standard)
- 2. Write 00h to register EASY_PROG, address 01h
- 3. Write 01h to register EASY_PROG, address 01h (due to 0 to 1 transition of ACTIVE the device is set to B standard, i.e. registers 02h to 23h are programmed automatically according to Table 13)
- 4. Write 00h to register EASY_PROG, address 01h (reset ACTIVE to logic 0)

Regis	ter	Standard	Standard								
Index	Name	M/N[1]	В	G/H	I	D/K	L	L-accent	FM radio		
02h	DIV_FUNC	04h	04h	04h	04h	04h	06h	07h	00h		
04h	PC_PLL_FUNC	24h	24h	24h	24h	24h	24h	24h	20h		
05h	SSIF_MUTE	04h	04h	04h	04h	04h	04h	04h	04h		
06h	reserved	48h	48h	48h	48h	48h	48h	48h	48h		
07h	reserved	84h	84h	84h	84h	84h	84h	84h	04h		
08h	reserved	08h	08h	08h	08h	08h	08h	08h	08h		
09h	DTO_PC_LOW	9Ah	15h	00h	BEh	8Ch	00h	26h	00h		
0Ah	DTO_PC_MID	99h	A3h	00h	84h	1Ah	00h	B4h	00h		
0Bh	DTO_PC_HIGH	99h	86h	80h	76h	7Eh	80h	17h	80h		
0Ch	DTO_SC_LOW	3Dh	7Bh	7Bh	BEh	BEh	D6h	D6h	DAh		
0Dh	DTO_SC_MID	20h	09h	09h	84h	84h	B9h	B9h	4Bh		
0Eh	DTO_SC_HIGH	59h	6Dh	6Dh	76h	79h	72h	72h	68h		
0Fh	FILTERS_1	21h	42h	48h	48h	44h	44h	48h	90h		
10h	FILTERS_2	31h	32h	32h	32h	32h	32h	32h	34h		
11h	GRP_DELAY	01h	02h	02h	10h	04h	08h	08h	10h		
12h	D_IF_AGC_SET_1	A0h	A0h	A0h	A0h	A0h	A0h	A0h	A0h		
13h	D_IF_AGC_SET_2	90h	90h	90h	90h	90h	90h	90h	08h		
14h	reserved	67h	67h	67h	67h	67h	67h	67h	E7h		
1Dh	CVBS_SET	31h	31h	31h	31h	31h	31h	31h	04h		
1Eh	CVBS_LEVEL	73h	73h	73h	81h	75h	6Ch	6Ch	73h		
1Fh	CVBS_EQ	10h	10h	10h	10h	10h	10h	10h	10h		
20h	SOUNDSET_1	21h	22h	22h	22h	22h	44h	44h	22h		
21h	SOUNDSET_2	22h	22h	22h	22h	22h	22h	22h	22h		
22h	SOUND_LEVEL	08h	04h	04h	04h	04h	04h	04h	02h		
23h	SSIF_LEVEL	AFh	AFh	AFh	AFh	AFh	AFh	AFh	AFh		

Table 13. Easy programming values

[1] M/N standard settings are equal to the power-on reset (default) values.

9.3.2 Diverse functions (includes tuner IF AGC Pin mode)

Table 14. DIV_FUNC register (address 02h) bit description

Bit	Symbol	Access	Value	Description
7 and 6	T_IF_SEL[1:0]	R/W		It determines the tuner IF AGC output Pin mode. The open-drain output can be used in special applications in need of a higher control voltage.
			00*	Normal mode
			01	Open-drain mode
			10	3-state mode
			11	not allowed
5 and 4	-	R/W	00*	not used
3	-	R/W	0*	reserved, must be set to logic 0
2	POL_DET	R/W		The polarity detector ensures the proper polarity of the video signal. So, the sync impulses of the video output are near ground level.
			0	polarity detector off
			1*	polarity detector on
1	VID_MOD	R/W		Selects video modulation. The only standards with positive video modulation are L and L-accent.
			0*	negative video modulation
			1	positive video modulation
0	IF_SWAP	R/W		When HIGH, the demodulator expects a swapped IF spectrum. This is the case in L-accent standard. This option is also built in for flexibility reasons.
			0*	normal IF spectrum expected
			1	swapped IF spectrum expected

9.3.3 ADC headroom

Table 15. ADC_HEADR register (address 03h) bit description Legend: * = default value.

Bit	Symbol	Access	Value	Description		
7 to 4	-	R/W	0000*	not used		
3 to 0	ADC_HEADR[3:0]	R/W		ADC_HEADR adjusts the needed headroom for the wanted channel's own sound carriers and the N $-$ 1 adjacent sound carriers (PC in L-accent standard). The ADC headroom is related to the sum of all signals. This function is built in for debugging purposes.		
			0001*	ADC headroom 3 dB		
			0010	ADC headroom 6 dB		
			0100	ADC headroom 9 dB		
			1000	ADC headroom 12 dB		