: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

TDA8925

Power stage 2×15 to 25 W class-D audio amplifier

Power stage 2×15 to 25 W class-D audio amplifier

CONTENTS

1	FEATURES
2	APPLICATIONS
3	GENERAL DESCRIPTION

4 QUICK REFERENCE DATA
5 ORDERING INFORMATION
6 BLOCK DIAGRAM
7 PINNING
8 FUNCTIONAL DESCRIPTION
8.1 Power stage
8.2 Protection
8.2.1 Overtemperature
8.2.2 Short-circuit across the loudspeaker terminals

9 LIMITING VALUES
10 THERMAL CHARACTERISTICS
11 QUALITY SPECIFICATION
12 DC CHARACTERISTICS
13 AC CHARACTERISTICS
14 SWITCHING CHARACTERISTICS

16
17
17.1
17.2
17.3
17.4

18
19
20

15.5.1 Version 2; revision 5

15.5.2 Printed-circuit board
15.6 Curves measured in reference design

TEST AND APPLICATION INFORMATION
SE application
Package ground connection
Output power
Reference design
Reference design bill of material

PACKAGE OUTLINES
SOLDERING
Introduction to soldering through-hole mount packages
Soldering by dipping or by solder wave
Manual soldering
Suitability of through-hole mount IC packages for dipping and wave soldering methods

DATA SHEET STATUS
DEFINITIONS
DISCLAIMERS

Power stage 2×15 to 25 W class-D audio amplifier

1 FEATURES

- High efficiency (> 94%)
- Operating voltage from $\pm 7.5 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$
- Very low quiescent current
- High output power
- Diagnostic output
- Usable as a stereo Single-Ended (SE) amplifier
- Electrostatic discharge protection (pin to pin)
- No heatsink required.

2 APPLICATIONS

- Television sets
- Home-sound sets
- Multimedia systems
- All mains fed audio systems.

3 GENERAL DESCRIPTION

The TDA8925 is a switching power stage for a high efficiency class-D audio power amplifier system.

With this power stage a compact $2 \times 15 \mathrm{~W}$ self oscillating digital amplifier system can be built, operating with high efficiency and very low dissipation. No heatsink is required. The system operates over a wide supply voltage range from $\pm 7.5 \mathrm{~V}$ up to $\pm 30 \mathrm{~V}$ and consumes a very low quiescent current.

4 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
General						
V_{P}	supply voltage		± 7.5	± 15	± 30	V
$\mathrm{I}_{\mathrm{q}(\text { tot) }}$	total quiescent current	no load connected; $\mathrm{V}_{P}= \pm 15 \mathrm{~V}$	-	25	45	mA
η	efficiency endstage	$\mathrm{P}_{\mathrm{o}}=15 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{V}_{\mathrm{P}}= \pm 15 \mathrm{~V}$	-	94	-	\%
Stereo single-ended configuration						
P_{0}	output power	$\mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{THD}=10 \% ; \mathrm{V}_{\mathrm{P}}= \pm 15 \mathrm{~V}$	14	15	-	W
		$\mathrm{R}_{\mathrm{L}}=6 \Omega ; \mathrm{THD}=10 \% ; \mathrm{V}_{\mathrm{P}}= \pm 15 \mathrm{~V}$	-	20	-	W

5 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA8925ST	RDBS17P	plastic rectangular-DIL-bent-SIL power package; 17 leads (row spacing 2.54 mm)	SOT577-2
TDA8925J	DBS17P	plastic DIL-bent-SIL power package; 17 leads (lead length $7.7 \mathrm{~mm})$	SOT243-3

Power stage 2×15 to 25 W class-D audio amplifier

TDA8925

6 BLOCK DIAGRAM

Fig. 1 Block diagram.

Power stage 2×15 to 25 W class-D audio amplifier

7 PINNING

SYMBOL	PIN	DESCRIPTION
SW1	1	digital switch input; channel 1
REL1	2	digital control output; channel 1
DIAG	3	digital open-drain output for overtemperature and overcurrent report
EN1	4	digital enable input; channel 1
VDD1 $^{\text {BOOT1 }}$	5	positive power supply; channel 1
OUT1	7	bootstrap capacitor; channel 1
VSS1 $^{\text {OWM output; channel 1 }}$		
STAB	8	negative power supply; channel 1
VSS2	9	decoupling internal stabilizer for logic supply
OUT2	10	negative power supply; channel 2
BOOT2	11	PWM output; channel 2
V $_{\text {DD2 }}$	13	bootstrap capacitor; channel 2
EN2	14	digital enable input; channel 2
POWERUP	15	enable input for switching on internal reference sources
REL2	16	digital control output; channel 2
SW2	17	digital switch input; channel 2

Fig. 2 Pin configuration.

Power stage 2×15 to 25 W class-D audio amplifier

8 FUNCTIONAL DESCRIPTION

The TDA8925 is a two-channel audio power amplifier system using the class-D technology (see Fig.1).

The power stage TDA8925S is used for driving the loudspeaker load. It performs a level shift from the low-power digital PWM signal, at logic levels, to a high-power PWM signal that switches between the main supply lines. A 2nd-order low-pass filter converts the PWM signal into an analog audio signal across the loudspeaker.

8.1 Power stage

The power stage contains the high-power DMOS switches, the drivers, timing and handshaking between the power switches and some control logic (see Fig.1). For protection, a temperature sensor and a maximum current detector are built-in on the chip.

The following functions are available:

- Switch (pins SW1 and SW2): digital inputs; switching from V_{SS} to $\mathrm{V}_{\mathrm{SS}}+12 \mathrm{~V}$ and driving the power DMOS switches
- Release (pins REL1 and REL2): digital outputs; switching from V_{SS} to $\mathrm{V}_{\mathrm{SS}}+12 \mathrm{~V}$; follow SW1 and SW2 with a small delay. Note: for self oscillating applications this pin is not used.
- Power-up (pin POWERUP): must be connected to a continuous supply voltage of at least $\mathrm{V}_{S S}+5 \mathrm{~V}$ with respect to V_{SS}
- Enable (pins EN1 and EN2): digital inputs; at a level of $V_{S S}$ the power DMOS switches are open and the PWM outputs are floating; at a level of $\mathrm{V}_{\mathrm{SS}}+12 \mathrm{~V}$ the power stage is operational
- Diagnostics (pin DIAG): digital open-drain output; pulled to V_{SS} if the temperature or maximum current is exceeded.

8.2 Protection

Temperature and short-circuit protection sensors are included in the TDA8925. In the event that the maximum current or maximum temperature is exceeded the diagnostic output is pulled down to $\mathrm{V}_{\text {SS }}$. Since the diagnostic is connected to the enable pins in the application the system shuts down itself.

8.2.1 OVERTEMPERATURE

If the junction temperature $\left(\mathrm{T}_{\mathrm{j}}\right)$ exceeds $150^{\circ} \mathrm{C}$, then pin DIAG becomes LOW. The diagnostic pin is released if the temperature is dropped to approximately $130^{\circ} \mathrm{C}$, so there is a hysteresis of approximately $20^{\circ} \mathrm{C}$.

8.2.2 SHORT-CIRCUIT ACROSS THE LOUDSPEAKER TERMINALS

When the loudspeaker terminals are short-circuited this will be detected by the current protection. If the output current exceeds the maximum output current of 3 A , then pin DIAG becomes LOW. Using pin DIAG in combination with the enable pins the system will shut down immediately, and restart again. The result is that the output current is limited at the overcurrent detection level.

Power stage 2×15 to 25 W class-D audio amplifier

9 LIMITING VALUES

In accordance with the Absolute Maximum Rate System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{P}	supply voltage		-	± 30	V
$\mathrm{V}_{\mathrm{P}(\mathrm{sc})}$	supply voltage for short-circuits across the load		-	± 30	V
IORM	repetitive peak current in output pins		-	3.5	A
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
T_{vj}	virtual junction temperature		-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {esd(HBM) }}$	electrostatic discharge voltage (HBM)	note 1 all pins with respect to V_{DD} (class 1a) all pins with respect to $\mathrm{V}_{S S}$ (class 1a) all pins with respect to each other (class 1a)	$\begin{aligned} & -500 \\ & -1500 \\ & -1500 \end{aligned}$	$\begin{aligned} & +500 \\ & +1500 \\ & +1500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {esd(MM) }}$	electrostatic discharge voltage (MM)	note 2 all pins with respect to V_{DD} (class B) all pins with respect to V_{SS} (class B) all pins with respect to each other (class B)	$\begin{aligned} & -250 \\ & -250 \\ & -250 \end{aligned}$	$\begin{aligned} & +250 \\ & +250 \\ & +250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$

Notes

1. Human Body Model (HBM); $\mathrm{R}_{\mathrm{s}}=1500 \Omega ; \mathrm{C}=100 \mathrm{pF}$.
2. Machine Model (MM); $\mathrm{R}_{\mathrm{s}}=10 \Omega ; \mathrm{C}=200 \mathrm{pF} ; \mathrm{L}=0.75 \mu \mathrm{H}$.

10 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\mathrm{th}(j-\mathrm{a})}$	thermal resistance from junction to ambient	in free air	40	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}(\mathrm{j})}$	thermal resistance from junction to case	in free air	1.5	$\mathrm{~K} / \mathrm{W}$

11 QUALITY SPECIFICATION

In accordance with "SNW-FQ611" if this device is used as an audio amplifier.

Power stage 2×15 to 25 W class-D audio amplifier

12 DC CHARACTERISTICS

$V_{P}= \pm 15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in test diagram of Fig.4; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage		± 7.5	± 15	± 30	V
$\mathrm{I}_{\mathrm{q}(\text { tot) }}$	total quiescent current	no load connected	-	25	45	mA
		outputs floating	-	5	10	mA
Internal stabilizer logic supply (pin STAB)						
$\mathrm{V}_{\text {O(STAB) }}$	stabilizer output voltage	referenced to $\mathrm{V}_{S S}$	11.7	13	14.3	V
Switch inputs (pins SW1 and SW2)						
嗄	HIGH-level input voltage	referenced to $\mathrm{V}_{\text {SS }}$	10	-	15	V
V_{IL}	LOW-level input voltage	referenced to $\mathrm{V}_{S S}$	0	-	2	V
Control outputs (pins REL1 and REL2)						
V_{OH}	HIGH-level output voltage	referenced to $\mathrm{V}_{\text {SS }}$	10	-	15	V
V_{OL}	LOW-level output voltage	referenced to $\mathrm{V}_{S S}$	0	-	2	V
Diagnostic output (pin DIAG, open-drain)						
V_{OL}	LOW-level output voltage	$\mathrm{I}_{\text {DIAG }}=1 \mathrm{~mA}$; note 1	0	-	1.0	V
ILO	output leakage current	no error condition	-	-	50	$\mu \mathrm{A}$
Enable inputs (pins EN1 and EN2)						
源	HIGH-level input voltage	referenced to $\mathrm{V}_{\text {SS }}$	9	-	15	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	referenced to $\mathrm{V}_{S S}$	0	5	-	V
$\mathrm{V}_{\text {EN(hys) }}$	hysteresis voltage		-	4	-	V
$\mathrm{l}_{\text {(EN) }}$	input current		-	-	300	$\mu \mathrm{A}$
Switching-on input (pin POWERUP)						
$\mathrm{V}_{\text {POWERUP }}$	operating voltage	referenced to $\mathrm{V}_{\text {SS }}$	5	-	12	V
$\mathrm{l}_{\text {(POWERUP) }}$	input current	$\mathrm{V}_{\text {POWERUP }}=12 \mathrm{~V}$	-	100	170	$\mu \mathrm{A}$
Temperature protection						
$\mathrm{T}_{\text {diag }}$	temperature activating diagnostic	$\mathrm{V}_{\text {DIAG }}=\mathrm{V}_{\text {DIAG(LOW) }}$	150	-	-	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {hys }}$	hysteresis on temperature diagnostic	$\mathrm{V}_{\text {DIAG }}=\mathrm{V}_{\text {DIAG(LOW }}$	-	20	-	${ }^{\circ} \mathrm{C}$
Current protection						
$\mathrm{I}_{\text {(ocpl) }}$	overcurrent protection level		-	3.5	-	A

Note

1. Temperature sensor or maximum current sensor activated.

Power stage 2×15 to 25 W class-D audio amplifier

13 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}= \pm 15 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Single-ended application; note 1						
P_{0}	output power	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{THD}=0.5 \% \\ & \mathrm{THD}=10 \% \end{aligned}$	$\begin{aligned} & 10^{(2)} \\ & 14^{(2)} \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=6 \Omega \\ & \mathrm{THD}=0.5 \% \\ & \mathrm{THD}=10 \% \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	${ }_{-}^{-}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
THD	total harmonic distortion	$\begin{gathered} \mathrm{P}_{\mathrm{o}}=1 \mathrm{~W} ; \text { note } 3 \\ \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} \\ \mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} \end{gathered}$	-	$\begin{aligned} & 0.05 \\ & 0.2 \end{aligned}$	0.1	$\begin{aligned} & \% \\ & \% \end{aligned}$
η	efficiency endstage	$\mathrm{P}_{\mathrm{o}}=2 \times 15 \mathrm{~W} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$; note 4	-	94	-	\%

Notes

1. $V_{P}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{f}_{\mathrm{osc}}=310 \mathrm{kHz} ; \mathrm{R}_{\mathrm{s}}=0.1 \Omega$ (series resistance of filter coil); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in reference design (SE application) shown in Fig.5; unless otherwise specified.
2. Indirectly measured; based on $\mathrm{R}_{\mathrm{ds}(\text { (on) }}$ measurement.
3. Total Harmonic Distortion (THD) is measured in a bandwidth of 22 Hz to 20 kHz (AES 17 brickwall filter). When distortion is measured using a low-order low-pass filter a significantly higher value will be found, due to the switching frequency outside the audio band. Measured using the typical application circuit, given in Fig.5.
4. Efficiency for power stage.

Power stage 2×15 to 25 W class-D audio amplifier

TDA8925

14 SWITCHING CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}= \pm 15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig.4; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
PWM outputs (pins OUT1 and OUT2); see Fig. 3						
t_{r}	rise time		-	30	-	ns
t_{f}	fall time		-	30	-	ns
tblank	blanking time		-	70	-	ns
$t_{\text {PD }}$	propagation delay	from pin SW1 (SW2) to pin OUT1 (OUT2)	-	200	-	ns
$\mathrm{t}_{\mathrm{W} \text { (min) }}$	minimum pulse width		-	220	270	ns
$\mathrm{R}_{\mathrm{ds}(\mathrm{on})}$	on-resistance of the output transistors		-	0.2	0.4	Ω

Fig. 3 Timing diagram PWM output, switch and release signals.

TDA8925

Fig. 4 Test diagram.

Power stage 2×15 to 25 W class-D audio amplifier

15.1 SE application

For SE application the application diagram as shown in Fig. 5 can be used.

15.2 Package ground connection

The heatsink of the TDA8925 is connected internally to $\mathrm{V}_{\text {SS }}$.

15.3 Output power

The output power in SE self oscillating class-D applications can be estimated using the formula
$P_{o(1 \%)}=\frac{\left[\frac{R_{L}}{R_{L}+R_{d s(\text { on })}+R_{s}} \times V_{P}\right]^{2}}{2 \times R_{L}}$
The maximum current $\mathrm{I}_{\mathrm{O}(\max)}=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ds}(\text { (n) })}+\mathrm{R}_{\mathrm{s}}}$ should not exceed 3 A .
Where:
$R_{L}=$ load impedance
$R_{S}=$ series resistance of filter coil
$\mathrm{P}_{\mathrm{o}(1 \%)}=$ output power just at clipping.
The output power at THD $=10 \%: \mathrm{P}_{\mathrm{o}(10 \%)}=1.25 \times \mathrm{P}_{\mathrm{o}(1 \%)}$.

15.4 Reference design

The reference design for a self oscillating class-D system for the TDA8925 is shown in Fig.5. The Printed-Circuit Board (PCB) layout is shown in Figs 6, 7 and 8. The bill of materials is given in Section 15.5.1.
13

[^0]Power stage 2×15 to 25 W class-D audio amplifier

Fig. 6 Printed-circuit board (bottom silk) layout for TDA8925ST.

Fig. 7 Printed-circuit board (bottom copper) layout for TDA8925ST.

Power stage 2×15 to 25 W class-D audio amplifier

Fig. 8 Printed-circuit board (top silk) layout for TDA8925ST.

15.5 Reference design bill of material

15.5.1 Version 2; revision 5

COMPONENT	DESCRIPTION	TYPE	COMMENTS	
U1	TDA8925ST	Philips Semiconductors, SOT577-2		
U2	LM393AD	National, SO8	alternatives: TI semiconductors and On semiconductors	
DZ1	36 V Zener diode	BZX-79C36V, DO-35	used as jumper	
DZ2	3.3 V Zener diode	BZX-79C3V3, DO-35	used as jumper, optional	
Q1	BC848 transistor	NPN, SOT23		
Q2	BC856 transistor	PNP, SOT23		
L1, L2	bead	Murata BL01RN1-A62	used as jumper	
L3, L4	Toko 11RHBP-330M ws	totally shielded		
S1	power-on switch	PCB switch, SACME 09-03290-01	optional	
CON1	VSS, GND, V DD connector	Augat 5KEV-03	optional	
CON2, CON3	Out2, Out1 connector	Augat 5KEV-02	optional	
CO1, CO2	In1, In2 connector	Cinch Farnell 152-396	optional	
J1, J2, J3	wire	Jumpers, D =0.5 mm		
Capacitors				
C37	SMD0805			

Power stage 2×15 to 25 W class-D audio amplifier

COMPONENT	DESCRIPTION	TYPE	COMMENTS
$\begin{aligned} & \mathrm{C} 28, \mathrm{C} 29, \mathrm{C} 30, \\ & \mathrm{C} 31 \end{aligned}$	$560 \mathrm{pF} / 100 \mathrm{~V}$	SMD0805	50 V is OK
$\begin{aligned} & \hline \text { C19, C20, C21, } \\ & \text { C22, C39, C42 } \end{aligned}$	$2.2 \mathrm{nF} / 50 \mathrm{~V}$	SMD0805	
C12, C13	$15 \mathrm{nF} / 50 \mathrm{~V}$	SMD0805	
C40, C41	$47 \mathrm{nF} / 50 \mathrm{~V}$	SMD1206	
$\begin{aligned} & \hline \text { C1, C2, C16, C17, } \\ & \text { C26, C38 } \end{aligned}$	$100 \mathrm{nF} / 50 \mathrm{~V}$	SMD0805	
$\begin{aligned} & \text { C8, C9, C10, C11, } \\ & \text { C34, C35 } \end{aligned}$	$220 \mathrm{nF} / 50 \mathrm{~V}$	SMD1206	C8 to C11 used as jumper
C32, C33	470 nF/63 V	MKT	
C24, C25	$1 \mu \mathrm{~F} / 16 \mathrm{~V}$	SMD1206	1206 due to supply range
$\begin{aligned} & \hline \text { C7, C14, C15, } \\ & \text { C27 } \end{aligned}$	$22 \mu \mathrm{~F} / 100 \mathrm{~V}$	Panasonic NHG Series ECA1JHG220	63 V is OK
C3, C4, C5, C6	$470 \mu \mathrm{~F} / 35 \mathrm{~V}$	Panasonic M Series ECA1VM471	
C18, C23, C36	these capacitors have been removed		
Resistors			
$\begin{aligned} & \text { R10, R26, R28, } \\ & \text { R29 } \end{aligned}$	0Ω	SMD1206	used as jumpers
R24	0Ω	SMD0805	short-circuited in a new printed-circuit board layout
R19, R21	$5.6 \Omega / 0.25 \mathrm{~W}$	SMD1206	1206 due to dissipation
R22, R23	$22 \Omega / 1 \mathrm{~W}$	SMD2512	2512 due to dissipation
R35	150Ω	SMD1206	used as jumper
R32	100Ω	SMD1206	used as jumper
R9	$1 \mathrm{k} \Omega$	SMD1206	used as jumper
R3, R4, R16	$1 \mathrm{k} \Omega$	SMD0805	
R11, R12	$2 \mathrm{k} \Omega$	SMD1206	used as jumpers
R25	$2 \mathrm{k} \Omega$	SMD0805	
R7, R8, R33, R34	$3.9 \mathrm{k} \Omega$	SMD0805	
R17	$5.6 \mathrm{k} \Omega$	SMD0805	
R1, R2, R15	$10 \mathrm{k} \Omega$	SMD0805	
R13, R14	$15 \mathrm{k} \Omega$	SMD0805	
R30, R31	$39 \mathrm{k} \Omega$	SMD0805	
R5, R6	$220 \mathrm{k} \Omega$	SMD0805	
R18, R20, R27	these resistors have been removed		

15.5.2 Printed-CIRCUIT BOARD

The printed-circuit board dimensions are $8.636 \times 5.842 \mathrm{~cm}$; single-sided copper of $35 \mu \mathrm{~m}$; silk screen on both sides; 79 holes; 94 components (32 resistors and 41 capacitors).

Power stage 2×15 to 25 W class-D audio amplifier

15.6 Curves measured in reference design

Fig. 9 THD +N as function of output power.

Fig. 11 Efficiency as function of output power.

$2 \times 8 \Omega \mathrm{SE} ; \mathrm{V}_{\mathrm{P}}= \pm 15 \mathrm{~V}$.
(1) $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$.
(2) $P_{0}=1 \mathrm{~W}$.

Fig. $10 \mathrm{THD}+\mathrm{N}$ as function of frequency.

Fig. 12 SVRR as function of frequency.

Power stage 2×15 to 25 W class-D audio amplifier

$2 \times 8 \Omega \mathrm{SE} ; \mathrm{V}_{\mathrm{P}}= \pm 15 \mathrm{~V}$.
Fig. $13 \mathrm{~S} / \mathrm{N}$ as function of output power.

Fig. 15 Gain as function of frequency.

$2 \times 8 \Omega \mathrm{SE} ; \mathrm{V}_{\mathrm{P}}= \pm 15 \mathrm{~V}$.
(1) $\mathrm{P}_{0}=1 \mathrm{~W}$.
(2) $\mathrm{P}_{0}=10 \mathrm{~W}$.

Fig. 14 Channel separation as function of frequency.

$2 \times 8 \Omega \mathrm{SE} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$.
(1) $\mathrm{THD}+\mathrm{N}=10 \%$.
(2) $\mathrm{THD}+\mathrm{N}=1 \%$.

Fig. 16 Output power as function of supply voltage.

Power stage 2×15 to 25 W class-D audio amplifier

16 PACKAGE OUTLINES

RDBS17P: plastic rectangular-DIL-bent-SIL power package; 17 leads (row spacing 2.54 mm)

view \mathbf{B} : mounting base side

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	\mathbf{d}	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{e}_{\mathbf{2}}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{j}	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{x}	$\mathbf{Z}^{(\mathbf{1})}$
mm	13.5	4.6	0.75	0.48	24.0	20.0	10	12.2	2.54	1.27	2.54	6	3.4	3.75	3.75	2.1	0.6	0.4	0.03	2.00
	4.4	0.60	0.38	23.6	19.6		11.8													

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT577-2				$\square \oplus$	$\begin{aligned} & -01-01-05 \\ & 03-03-12 \\ & \hline \end{aligned}$

Power stage 2×15 to 25 W class-D audio amplifier

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	\mathbf{d}	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{e}_{\mathbf{2}}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{j}	\mathbf{L}	$\mathbf{L}_{\mathbf{3}}$	\mathbf{m}	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{x}	$\mathbf{Z}^{(\mathbf{1})}$
mm	17.0	4.6	0.75	0.48	24.0	20.0	10	12.2	2.54	1.27	5.08	6	3.4	8.4	2.4	4.3	2.1		0.6	0.25	0.03
	15.5	4.4	0.60	0.38	23.6	19.6	10	11.8	2.00												

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT243-3					$-99-12-17$	

Power stage 2×15 to 25 W class-D audio amplifier

17 SOLDERING

17.1 Introduction to soldering through-hole mount packages

This text gives a brief insight to wave, dip and manual soldering. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

17.2 Soldering by dipping or by solder wave

Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing. Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg(max) }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

17.3 Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.
17.4 Suitability of through-hole mount IC packages for dipping and wave soldering methods

PACKAGE	SOLDERING METHOD	
	DIPPING	WAVE
DBS, DIP, HDIP, RDBS, SDIP, SIL	suitable	suitable ${ }^{(1)}$
PMFP $^{(2)}$	-	not suitable

Notes

1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
2. For PMFP packages hot bar soldering or manual soldering is suitable.

Power stage 2×15 to 25 W class-D audio amplifier

18 DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

19 DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

20 DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

[^0]: 1ə!!!!|dure o!pne

