mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC01 2001 Dec 11

TDA8929T

CONTE	NTS	15	TEST AND APPLICATION INFORMATION
1	FEATURES	15.1 15.2	Test circuit BTL application
2	APPLICATIONS	15.3	Mode pin
3	GENERAL DESCRIPTION	15.4	External clock
4	ORDERING INFORMATION	15.5	Reference designs
5	QUICK REFERENCE DATA	15.6 15.7	Reference design bill of material Curves measured in reference design
6	BLOCK DIAGRAM	16	PACKAGE OUTLINE
7	PINNING	17	SOLDERING
8	FUNCTIONAL DESCRIPTION	17.1	Introduction to soldering surface mount
8.1	Controller		packages
8.2	Pulse width modulation frequency	17.2	Reflow soldering
8.3	Protections	17.3	Wave soldering
8.3.1	Diagnostic temperature	17.4	Manual soldering
8.3.2	Diagnostic current	17.5	Suitability of surface mount IC packages for
8.3.3	Start-up safety test		wave and reflow soldering methods
8.4	Differential audio inputs	18	DATA SHEET STATUS
9	LIMITING VALUES	19	DEFINITIONS
10	THERMAL CHARACTERISTICS	20	DISCLAIMERS
11	QUALITY SPECIFICATION		
12	DC CHARACTERISTICS		
13	AC CHARACTERISTICS		

- 14 SWITCHING CHARACTERISTICS
- 14.1 Minimum pulse width

TDA8929T

1 FEATURES

- Operating voltage from ± 15 to ± 30 V
- Very low quiescent current
- Low distortion
- Fixed gain of 30 dB Single-Ended (SE) or 36 dB Bridge-Tied Load (BTL)
- Good ripple rejection
- Internal switching frequency can be overruled by an external clock
- · No switch-on or switch-off plop noise
- Diagnostic input for short-circuit and temperature protection
- Usable as a stereo Single-Ended (SE) amplifier or as a mono amplifier in Bridge-Tied Load (BTL)
- Start-up safety test, to protect for short-circuits at the output of the power stage to supply lines
- Electrostatic discharge protection (pin to pin).

2 APPLICATIONS

- Television sets
- Home-sound sets
- Multimedia systems
- · All mains fed audio systems
- Car audio (boosters).

4 ORDERING INFORMATION

PACKAGE TYPE NUMBER PACKAGE NAME DESCRIPTION VERSION TDA8929T SO24 plastic small outline package; 24 leads; body width 7.5 mm SOT137-1

3 GENERAL DESCRIPTION

The TDA8929T is the controller of a two-chip set for a high efficiency class-D audio power amplifier system. The system is divided into two chips:

- TDA8929T; the analog controller chip in a SO24 package
- TDA8926J/ST/TH or TDA8927J/ST/TH; a digital power stage in a DBS17P, RDBS17P or HSOP24 power package.

With this chip set a compact 2×50 W or 2×100 W audio amplifier system can be built, operating with high efficiency and very low dissipation. No heatsink is required, or depending on supply voltage and load, a very small one. The system operates over a wide supply voltage range from ± 15 up to ± 30 V and consumes a very low quiescent current.

TDA8929T

5 QUICK REFERENCE DATA

SYMBOL	PARAMETER		TYP.	MAX.	UNIT
General; note 1					•
V _P	supply voltage	±15	±25	±30	V
I _{q(tot)}	total quiescent current	_	20	30	mA
Stereo single-end	led configuration				
G _{v(cl)}	closed-loop voltage gain	29	30	31	dB
Z _i	input impedance	45	68	-	kΩ
V _{n(o)}	noise output voltage	_	220	400	μV
SVRR	supply voltage ripple rejection	40	50	-	dB
α_{cs}	channel separation	_	70	_	dB
v _{oo}	DC output offset voltage	_	_	150	mV
Mono bridge-tied	load configuration				
G _{v(cl)}	closed-loop voltage gain	35	36	37	dB
Z _i	input impedance	23	34	-	kΩ
V _{n(o)}	noise output voltage	-	280	-	μV
SVRR	supply voltage ripple rejection	-	44	-	dB
V ₀₀	DC output offset voltage	_	_	200	mV

Note

1. $V_P = \pm 25 V$.

TDA8929T

6 BLOCK DIAGRAM

TDA8929T

7 PINNING

SYMBOL	PIN	DESCRIPTION
V _{SS1}	1	negative analog supply voltage channel 1
SGND1	2	signal ground channel 1
V _{DD1}	3	positive analog supply voltage channel 1
IN1-	4	negative audio input channel 1
IN1+	5	positive audio input channel 1
MODE	6	mode select input (standby/mute/operating)
OSC	7	oscillator frequency adjustment, or tracking input
IN2+	8	positive audio input channel 2
IN2-	9	negative audio input channel 2
V _{DD2}	10	positive analog supply voltage channel 2
SGND2	11	signal ground channel 2
V _{SS2(sub)}	12	negative analog supply voltage channel 2 (substrate)
SW2	13	digital switch output channel 2
REL2	14	digital control input channel 2
DIAGTMP	15	digital input for temperature limit error report from power stage
EN2	16	digital control output for enable channel 2 of power stage
PWM2	17	input for feedback from PWM output power stage channel 2
V _{SSD}	18	negative digital supply voltage; reference for digital interface to power stage
STAB	19	pin for a decoupling capacitor for internal stabilizer
PWM1	20	input for feedback from PWM output power stage channel 1
EN1	21	digital control output for enable channel 1 of power stage
DIAGCUR	22	digital input for current error report from power stage
REL1	23	digital control input channel 1
SW1	24	digital switch output channel 1

Fig.2 Pin configuration.

TDA8929T

8 FUNCTIONAL DESCRIPTION

The combination of the TDA8926J and the TDA8929T produces a two-channel audio power amplifier system using the class-D technology (see Fig.4).

In the TDA8929T controller device the analog audio input signal is converted into a digital Pulse Width Modulation (PWM) signal. The digital power stage (TDA8926) is used for driving the low-pass filter and the loudspeaker load. It performs a level shift from the low-power digital PWM signal, at logic levels, to a high-power PWM signal that switches between the main supply lines. A second-order low-pass filter converts the PWM signal into an analog audio signal across the loudspeaker.

For a description of the power stage see the specification of the TDA8926.

The TDA8926 can be used for an output power of 2×50 W. The TDA8927 should be used for a higher output power of 2×100 W.

8.1 Controller

The controller contains (for two audio channels) two Pulse Width Modulators (PWMs), two analog feedback loops and two differential input stages. This chip also contains circuits common to both channels such as the oscillator, all reference sources, the mode functionality and a digital timing manager.

The pinning of the TDA8929T and the power stage devices are designed to have very short and straight connections between the packages. For optimum performance the interconnections between the packages must be as short as possible.

Using this two-chip set an audio system with two independent amplifier channels with high output power, high efficiency (90%) for the system, low distortion and a low quiescent current is obtained. The amplifiers channels can be connected in the following configurations:

- Mono Bridge-Tied Load (BTL) amplifier
- Stereo Single-Ended (SE) amplifier.

The amplifier system can be switched in three operating modes via the mode select pin:

- · Standby: with a very low supply current
- Mute: the amplifiers are operational, but the audio signal at the output is suppressed
- On: amplifier fully operational with output signal.

For suppressing pop noise the amplifier will remain automatically for approximately 220 ms in the mute mode before switching to operating mode. In this time the coupling capacitors at the input are fully charged.

Figure 3 shows an example of a switching circuit for driving pin MODE.

Philips Semiconductors

Preliminary specification

Controller class-D audio amplifier

TDA8929T

2001 Dec 11

_

ω

8.2 Pulse width modulation frequency

The output signal of the power stage is a PWM signal with a carrier frequency of approximately 300 kHz. Using a second-order LC demodulation filter in the application results in an analog audio signal across the loudspeaker. This switching frequency is fixed by an external resistor R_{OSC} connected between pin OSC and V_{SS} . With the resistor value given in the application diagram, the carrier frequency is typical 317 kHz. The carrier frequency can be

calculated using: $f_{osc} = \frac{9 \times 10^9}{R_{OSC}}$ [Hz]

If two or more class-D systems are used in the same audio application, it is advised to have all devices working at the same switching frequency. This can be realized by connecting all OSC pins together and feed them from an external oscillator. Using an external oscillator it is necessary to force pin OSC to a DC-level above SGND for switching from the internal to an external oscillator. In this case the internal oscillator is disabled and the PWM will switch on the external frequency. The frequency range of the external oscillator must be in the range as specified in the switching characteristics.

Application in a practical circuit:

- Internal oscillator: R_{OSC} connected between pin OSC and V_{SS}
- External oscillator: connect oscillator signal between pin OSC and pin SGND; delete R_{OSC}.

8.3 Protections

The controller is provided with two diagnostic inputs. One or both pins can be connected to the diagnostic output of one or more power stages.

8.3.1 DIAGNOSTIC TEMPERATURE

A LOW level on pin DIAGTMP will immediately force both pins EN1 and EN2 to a LOW level. The power stage shuts down and the temperature is expected to drop. If pin DIAGTMP goes HIGH, pins EN1 and EN2 will immediately go HIGH and normal operation will be maintained.

Temperature hysteresis, a delay before enabling the system again, is arranged in the power stage. Internally there is a pull-up resistance to 5 V at the diagnostic input of the controller. Because the diagnostic output of the power stage is an open-drain output, diagnostic lines can be connected together (wired-OR). It should be noted that the TDA8929T itself has no temperature protection.

8.3.2 DIAGNOSTIC CURRENT

This input is intended to protect against short-circuits across the loudspeaker load. In the event that the current limit in the power stage is exceeded, pin DIAGCUR must be pulled to a LOW level. A LOW level on the diagnostic current input will immediately force the output pins EN1 and EN2 to a LOW level. The power stage will shut down within less than 1 μ s and the high current is switched off. In this state the dissipation is very low. Every 220 ms the controller will attempt to restart the system. If there is still a short-circuit across the loudspeaker load, the system is switched off again as soon as the maximum current is exceeded. The average dissipation will be low because of this low duty factor. The actual current limiting value is set by the power stage.

Depending on the type of power stage which is used, several values are possible:

- TDA8926TH: limit value can be externally adjusted with a resistor; maximum is 5 A
- TDA8927TH: limit value can be externally adjusted with a resistor; maximum is 7.5 A
- TDA8926J and TDA8926ST: limit value is fixed at 5 A
- TDA8927J and TDA8927ST: limit value is fixed at 7.5 A.

TDA8929T

TDA8929T

8.3.3 START-UP SAFETY TEST

During the start-up sequence, when pin MODE is switched from standby to mute, the condition at the output terminals of the power stage are checked. These are the same lines as the feedback inputs of the controller. In the event of a short-circuit of one of the output terminals to V_{DD} or V_{SS} the start-up procedure is interrupted and the system waits for non-shorted outputs. Because the test is done before enabling the power stages, no large currents will flow in the event of a short-circuit. This system protects against short-circuits at both sides of the output filter to both supply lines. When there is a short-circuit from the outputs of the power stage to one of the supply lines, before the demodulation filter, it will also be detected by the start-up safety test. Practical use from this test feature can be found in detection of short-circuits on the printed-circuit board.

Remark: this test is only operational prior to or during the start-up sequence, and not during normal operating.

8.4 Differential audio inputs

For a high common mode rejection and a maximum flexibility of application, the audio inputs are fully differential. By connecting the inputs anti-parallel the phase of one of the channels is inverted, so that a load can be connected between the two output filters. In this case the system operates as a mono BTL amplifier (see Fig.5).

Also in the stereo single-ended configuration it is recommended to connect the two differential inputs in anti-phase. This has advantages for the current handling of the power supply at low signal frequencies.

TDA8929T

9 LIMITING VALUES

In accordance with the Absolute Maximum Rate System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage		_	±30	V
V _{MODE(sw)}	mode select switch voltage	referenced to SGND	0	5.5	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
T _{vj}	virtual junction temperature		_	150	°C
V _{es(HBM)}	electrostatic discharge	note 1			
	voltage (HBM)	all pins with respect to V_{DD} (class A)	-500	+500	V
		all pins with respect to V_{SS} (class A1)	-1000	+1000	V
		all pins with respect to GND (class B)	-2500	+2500	V
		all pins with respect to each other (class B)	-2000	+2000	V
V _{es(MM)}	electrostatic discharge	note 2			
	voltage (MM)	all pins with respect to V_{DD} (class A)	-100	+100	V
		all pins with respect to V _{SS} (class B)	-100	+100	V
		all pins with respect to GND (class B)	-300	+300	V
		all pins with respect to each other (class B)	-200	+200	V

Notes

1. Human Body Model (HBM); R_s = 1500 Ω and C = 100 pF.

2. Machine Model (MM); R_s = 10 $\Omega;$ C = 200 pF and L = 0.75 $\mu H.$

10 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	65	K/W

11 QUALITY SPECIFICATION

In accordance with "SNW-FQ611-part D" if this device is used as an audio amplifier.

TDA8929T

12 DC CHARACTERISTICS

 V_{P} = ±25 V; T_{amb} = 25 °C; measured in Fig.10; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply					•	•
V _P	supply voltage	note 1	±15	±25	±30	V
I _{q(tot)}	total quiescent current		-	20	30	mA
l _{stb}	standby current	$V_{MODE} = 0 V$	-	30	100	μA
Offset						
v _{oo}	output offset voltage in system	on and mute	-	-	150	mV
ΔV ₀₀	delta output offset voltage in system	on \leftrightarrow mute	-	-	80	mV
Mode select in	put (pin MODE); see Figs 6, 7 a	nd 8				
V _{MODE}	input voltage	note 2	0	-	5.5	V
I _{MODE}	input current	V _{MODE} = 5.5 V	-	-	1000	μA
V _{th1+}	positive threshold voltage 1	standby \rightarrow mute; note 2	_	1.6	2.0	V
V _{th1-}	negative threshold voltage 1	mute \rightarrow standby; note 2	0.8	1.0	-	V
V _{MODE(hys1)}	hysteresis voltage 1	$ (V_{th1+}) - (V_{th1-}) $	-	600	-	mV
V _{th2+}	positive threshold voltage 2	mute \rightarrow on; note 2	_	3.8	4.0	V
V _{th2-}	negative threshold voltage 2	on \rightarrow mute; note 2	3.0	3.2	-	V
V _{MODE(hys2)}	hysteresis voltage 2	$ (V_{th2+}) - (V_{th2-}) $	-	600	-	mV
Audio inputs (p	oins IN1+, IN1–, IN2+ and IN2–)					
VI	DC input voltage	note 2	-	0	-	V
Internal stabiliz	zer (pin STAB)					
V _{O(STAB)}	stabilizer output voltage	mute and on; note 3	11	13	15	V
I _{STAB(max)}	maximum current on pin STAB	mute and on	10	-	-	mA
Enable outputs	(pins EN1 and EN2)		•			
V _{OH}	HIGH-level output voltage	referenced to V _{SS}	V _{STAB} – 1.6	V _{STAB} – 0.7	-	V
V _{OL}	LOW-level output voltage	referenced to V_{SS}	0	-	0.8	V
Current diagno	se input (pin DIAGCUR with in	ternal pull-up resis	stance)		·	
V _{IH}	HIGH-level input voltage	no errors; note 3	-	V _{STAB}	-	V
V _{IL}	LOW-level input voltage	note 3	0	_	1.5	V
R _{pu(int)}	internal pull-up resistance to internal digital supply		_	12	-	kΩ
Temperature d	iagnose input (pin DIAGTMP w	ith internal pull-up	resistance)			
V _{IH}	HIGH-level input voltage	no errors; note 3	4	5.5		V
VIL	LOW-level input voltage	note 3	0	_	1.5	V

TDA8929T

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
R _{pu(int)}	internal pull-up resistance to internal digital supply		_	12	_	kΩ	
Switch outputs (pins SW1 and SW2)							
V _{OH}	HIGH-level output voltage	note 3	$V_{STAB} - 1.6$	$V_{STAB} - 0.7$	-	V	
V _{OL}	LOW-level output voltage	note 3	0	_	0.8	V	
Control inputs (pins REL1 and REL2)							
V _{IH}	HIGH-level input voltage	note 3	10	_	V _{STAB}	V	
V _{IL}	LOW-level input voltage	note 3	0	_	2	V	

Notes

- 1. The circuit is DC adjusted at V_P = ± 15 to ± 30 V.
- 2. Referenced to SGND (0 V).
- 3. Referenced to V_{SS} .

13 AC CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Stereo sin	Stereo single-ended application; note 1					
THD	total harmonic distortion	$P_o = 1$ W; note 2				
		f _i = 1 kHz	-	0.01	0.05	%
		f _i = 10 kHz	-	0.1	-	%
G _{v(cl)}	closed-loop voltage gain		29	30	31	dB
SVRR	supply voltage ripple rejection	on; f _i = 100 Hz; note 3	_	55	-	dB
		on; f _i = 1 kHz; note 3	40	50	-	dB
		mute; f _i = 100 Hz; note 3	_	55	-	dB
		standby; f _i = 100 Hz; note 3	_	80	-	dB
Z _i	input impedance		45	68	-	kΩ
V _{n(o)}	noise output voltage	on; $R_s = 0 \Omega$; $B = 22 Hz$ to 22 kHz	_	220	400	μV
		on; $R_s = 10 \text{ k}\Omega$; $B = 22 \text{ Hz to } 22 \text{ kHz}$	_	230	-	μV
		mute; note 4	_	220	-	μV
α _{cs}	channel separation	$P_{o} = 10 \text{ W}; R_{s} = 0 \Omega$	_	70	-	dB
∆G _v	channel unbalance		_	-	1	dB
Vo	output signal	mute; $V_i = V_{i(max)} = 1 V (RMS)$	-	-	400	μV
CMRR	common mode rejection ratio	$V_i = 1 V (RMS)$	-	75	-	dB
Mono BTL	application; note 5					
THD	total harmonic distortion	P _o = 1 W; note 2				
		f _i = 1 kHz	-	0.01	0.05	%
		f _i = 10 kHz	-	0.1	-	%
G _{v(cl)}	closed-loop voltage gain		35	36	37	dB

TDA8929T

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
SVRR	supply voltage ripple rejection	on; f _i = 100 Hz; note 3	-	49	-	dB
		on; f _i = 1 kHz; note 3	36	44	-	dB
		mute; f _i = 100 Hz; note 3	-	49	-	dB
		standby; f _i = 100 Hz; note 3	-	80	-	dB
Z _i	input impedance		23	34	-	kΩ
V _{n(o)}	noise output voltage	on; $R_s = 0 \Omega$; $B = 22 Hz$ to 22 kHz	_	280	500	μV
		on; $R_s = 10 \text{ k}\Omega$; $B = 22 \text{ Hz to } 22 \text{ kHz}$	-	300	_	μV
		mute; note 4	-	280	-	μV
Vo	output signal	mute; $V_i = V_{i(max)} = 1 V (RMS)$	_	-	500	μV
CMRR	common mode rejection ratio	$V_i = 1 V (RMS)$	-	75	-	dB

Notes

1. $V_P = \pm 25 \text{ V}$; $f_i = 1 \text{ kHz}$; $T_{amb} = 25 \text{ °C}$; measured in Fig.10; unless otherwise specified.

- 2. THD is measured in a bandwidth of 22 Hz to 22 kHz. When distortion is measured using a low-order low-pass filter a significantly higher value will be found, due to the switching frequency outside the audio band.
- 3. $V_{ripple} = V_{ripple(max)} = 2 V (p-p); R_s = 0 \Omega.$
- 4. B = 22 Hz to 22 kHz and independent of R_s .
- 5. $V_P = \pm 25 \text{ V}$; $f_i = 1 \text{ kHz}$; $T_{amb} = 25 \text{ °C}$; measured in reference design in Fig.12; unless otherwise specified.

TDA8929T

TDA8929T

14 SWITCHING CHARACTERISTICS

 $V_P = \pm 25 \text{ V}$; $T_{amb} = 25 \text{ °C}$; measured in Fig.10; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT			
Switching freq	Switching frequency								
f _{osc}	oscillator frequency	R _{OSC} = 30.0 kΩ	309	317	329	kHz			
		$R_{OSC} = 27 \text{ k}\Omega;$ see Fig.12	-	360	-	kHz			
f _{osc(r)}	oscillator frequency range	note 1	210	_	600	kHz			
V _{OSC}	maximum voltage at pin OSC	frequency tracking	-	_	SGND + 12	V			
V _{OSC(trip)}	trip level at pin OSC for tracking	frequency tracking	-	SGND + 2.5	—	V			
f _{track}	frequency range for tracking	frequency tracking	200	_	600	kHz			
V _{OSC(ext)}	voltage at pin OSC for tracking	note 2	-	5	-	V			

Notes

- 1. Frequency set with R_{OSC}, according to the formula in the functional description.
- 2. For tracking the external oscillator has to switch around SGND + 2.5 V with a minimum voltage of V_{OSC(ext)}.

14.1 Minimum pulse width

The minimum obtainable pulse width of the PWM output signal of a class-D system, sets the maximum output voltage swing after the demodulation filter and also the maximum output power. Delays in the power stages are the main cause for the minimum pulse width being not equal to zero. The TDA8926 and TDA8927 power stages have a minimum pulse width of $t_{W(min)} = 220$ ns (typical). Using the TDA8929T controller, the effective minimum pulse is reduced by a factor of two during clipping. For the calculation of the maximum output power at clipping the effective minimum pulse width during clipping is $0.5t_{W(min)}$.

For the practical useable minimum and maximum duty factor (δ) which determines the maximum output power:

$$\frac{t_{W(min)} \times f_{osc}}{2} \times 100\% < \delta < \left(1 - \frac{t_{W(min)} \times f_{osc}}{2}\right) \times 100\%$$

Using the typical values of the TDA8926 and TDA8927 power stages:

 $3.5\% < \delta < 96.5\%$.

TDA8929T

Controller class-D audio amplifier

15 TEST AND APPLICATION INFORMATION

15.1 Test circuit

The test diagram in Fig.10 can be used for stand alone testing of the controller. Audio and mode input pins are configured as in the application. For the simulation of a switching output power stage a simple level shifter can be used. It converts the digital PWM signal from the controller (switching between V_{SS} and V_{SS} + 12 V level) to a PWM signal switching between V_{DD} and V_{SS} .

A proposal for a simple level shifting circuit is given in Fig.9.

The low-pass filter performs the demodulation, so that the audio signal can be measured with an audio analyzer. For measuring low distortion values, the speed of the level shifter is important. Special care has to be taken at a sufficient supply decoupling and output waveforms without ringing.

The handshake with the power stage is simulated by a direct connection of the release inputs (REL1 and REL2) with the switch outputs (SW1 and SW2) of the controller. The enable outputs (EN1 and EN2) for waking-up the power stage are not used here, only the output level and timing are measured.

18

Philips Semiconductors

Controller class-D audio amplifier

Preliminary specification

TDA8929T

TDA8929T

15.2 BTL application

When using the system in a mono BTL application (for more output power), the inputs of both channels must be connected in parallel. The phase of one the inputs must be inverted (see Fig.5). In principle the loudspeaker can be connected between the outputs of the two single-ended demodulation filters. For improving the common mode behavior of the filter, the configuration in Fig.12 is advised.

15.3 Mode pin

For correct operation the switching voltage on pin MODE should be de-bounced. If this pin is driven by a mechanical switch an appropriate de-bouncing low-pass filter should be used. If pin MODE is driven by an electronic circuit or microcontroller then it should remain, for at least 100 ms, at the mute voltage level (V_{th1+}) before switching back to the standby voltage level.

15.4 External clock

Figure 11 shows an external clock oscillator circuit.

15.5 Reference designs

The reference design for a two-chip class-D audio amplifier for TDA8926J or TDA8927J and TDA8929T is shown in Fig.12. The Printed-Circuit Board (PCB) layout is shown in Fig.13. The bill of materials is given in Table 1.

The reference design for a two-chip class-D audio amplifier for TDA8926TH or TDA8927TH and TDA8929T is shown in Fig.14. The PCB layout is shown in Fig.15.

_

VDDA mode select C1 220 nF V_{SSD} VDDD VDDA 4 C2 220 nF → V_{SSA} 1 C11 R19 39 kΩ B20 C10. 560 pF 560 pF V_{DD1} VDD2 VSS2 V_{SS1} QGND 39 kΩ R12 5.6 Ω L2 C18 1 1 nF T on 3 10 12 R11 1 MODE PWM2 D1 5.6 Ω mute 17 富 C44 SW2 SW2 OUT2-(5.6 V) - S1 off 13 17 1 REL2 REL2 Sumida 33 uH 4 or 8 Ω SE 16 14 CDRH127-330 15 nF R1 EN2 EN2 GND OSC 16 14 12 -------27 kΩ U2 U1 R15 24 Ω C19 1 nF QGND VDDD OUT2+ BOOT2 C14 VSSA 4 C3 R24 V_{DD1} 200 kΩ ► V_{DDD} TDA8929T STAB TDA8926J 19 POWERUP 220 nF V_{DD2} 5 or OUT2-SGND1 19 D2 . C4 + 220 nF TDA8927J (7.5 V) C5 STAB C7 220 nF C6 220 nF 8Ω BTL /SSD GND 🔶 → GND ÷ 18 → V_{SSA} V_{SSD} + SGND2 220 nF QGND UT1+ V_{SS2} R10 180 pF DIAG 10 22 C17 220 nF V_{SS1} IN1-DIAGCUR 1 kΩ CONTROLLER POWER STAGE VSSD C16 C22 330 pF R16 24 Ω IN1-OUT1-BOOT1 EN1 EN1 21 REL1 REL1 **C**9 Sumida 33 µH CDRH127-330 IN2-י⊤ו_ו_ו 4 or 8 Ω 23 15 nF SW1 SW1 C23 24 .15 \sim C21 1 nF QGND 330 pF PWM1 L4 OUT1+ IN2-20 R14 5.6 Ω .16 R13 15 5.6 Ω outputs C24 _ C26 C27 C25 C12 C13 470 nF + ⊥ Cis ⊤ 560 pF 470 nF = 470 nF = 470 nF 茾 n.c. 560 pF v_{SSD} R5 10 kΩ R6 10 kΩ R7 10 kΩ R4 L7 QGND 10 kΩ bead C28 C29 L5 bead ► V_{DDA} ╢ ⊣⊢ C40 1 nF 1 nF VDDD C36 C37 + C40 47 μF C34 1500 uF +25 V VDD R21 10 kΩ C32 220 nF 220 nF Ŷ (35 V) ſ₽ 220 nF 0 1 (35 V) input 1 input 2 GND o 2 ► GND 3 , C35 0 .11 .13 .14 R22 C33 ŧĻ C41 47 μF (35 V) -16 1500 μF (35 V) 1 -0 -25 V 9.1 kΩ 220 nF C38 C39 VSS QGND QGND 220 nF 220 nF \sim J2 → V_{SSD} bead L6 C31 ⊥ 1 nF ⊥ inputs VSSA VSS MLD633 QGND power supply R21 and R22 are only necessary in BTL applications with asymmetrical supply. BTL: remove R6, R7, C23, C26 and C27 and close J5 and J6.

Controller class-D

audio amplifier

SE

TDA8929T

C22 and C23 influence the low-pass frequency response and should be tuned with the real load (loudspeaker).

Inputs floating or inputs referenced to QGND (close J1 and J4) or referenced to V_{SS} (close J2 and J3) for an input signal ground reference.

Fig.12 Two-chip class-D audio amplifier application diagram for TDA8926J or TDA8927J and TDA8929T.

20

2001 Dec 11

Philips Semiconductors

2

Preliminary specification

_

mode select C11 100 nF VDDA V_{DDD} V_{SSD} VDDA 4 C12 100 nF VSSA C25 560 pF R1 30 kΩ R2 C24 I 560 pF V_{DD1} V_{DD2} VSS2 VSS1 OGND 39 kΩ V_{SS(sub)} 10 12 3 B12 R13 on VSSD MODE PWM2 L1 bead 5.6 Ω 5.6 Ω D1 mute 11 L2 SW2 OUT2-____C1 ____220 nF SW2 (5.6 V - S1 off $\overline{}$ 13 Sumida 33 μH CDRH127-330 REL2 REL2 OUT2 C26 4 or 8 Ω SE 1. 15 EN2 EN2 ' 15 nF R3 OSC 13 GND 16 С36 上 U2 10 R16 5.6 Ω C41 1 nF QGND **♦**V_{DDD} BOOT2 OUT2+ 27 kΩ U1 470 nF VSSA 4 B18 C2 V_{DD1} 200 kΩ POWERUP -11 ⊥ C38 ⊤ 220 nF TDA8929T STAB VDDD 14 TDA8926TH 19 + C31 1500 μF 220 nF V_{DD2} D2 C29 OUT2-C13 100 nF VSSD C14 C14 C14 C14 C14 or SGND1 11 *___STAB 100 nF TDA8927TH C28 (35 V) C27 V_{SSD} 8Ω BTL GND 🔶 → V_{SSA} 100 nF GND 18 100 nF STAB 100 nF SGND2 C30 100 nF + C32 1500 μF V_{SS2} QGND UT1+ ⊥ ו <u>|______</u>ו C15 180 pF R8 DIAG V_{SS1} IN1+ 22 CONTROLLER ► V_{SSD} 1 kΩ POWER STAGE C3 C37 -R17 5.6 Ω 03/ ⊥ 470 nF IN1-BOOT1 OUT1-EN1 EN1 3 21 REL1 OUT1 C33 REL1 IN2+ L3 Sumida 33 uH 4 or 8 Ω SE 23 bead CDRH127-330 SW1 SW1 C4 24 2 \sim C43 1 nF QGND L4 OUT1+ IN2-PWM1 20 J6 LIM R15 5.6 Ω **B14** V_{SSD} 4 -0.0-1, 12, 18, 20 5.6 Ω 15 ↓ ↓ C35 C35 560 pF VDDD VSSD C34 ⊥ 560 pF ↓ outputs C7 1 μF C8 1 uF C5 1 μF C6 1 μF n.c. n.c. R4 10 kΩ R5 10 kΩ R6 10 kΩ R7 10 kΩ QGND C16 L7 bead R11 C9 C10 L5 ► V_{DDA} -11-⊣⊢ 5.6 Ω head 1 nF 1 nF C22 47 μF (35 V) ► V_{DDD} C18 C19 q +25 V VDD 100 nF ſſ R9 10 kΩ 0 1 input 1 input 2 GND 0 2 → GND .11 .13 .14 0 ---16 3 Β10 9.1 kΩ --` C23 47 μF ⊥ C20 100 nF QGND QGND -25 V VSS C21 J2 - 100 nF (35 V) → V_{SSD} bead L6 v ss inputs ► V_{SSA} QGND power supply MGW232 R9 and R10 are only necessary in BTL applications with asymmetrical supply. BTL: remove R6, R7, C4, C7 and C8 and close J5 and J6. Demodulation coils L2 and L4 should be matched in BTL. Inputs floating or inputs referenced to QGND (close J1 and J4) or referenced to V_{SS} (close J2 and J3).

Fig.14 Two-chip class-D audio amplifier application diagram for TDA8926TH or TDA8927TH and TDA8929T.

Controller class-D

audio amplifier

Preliminary specification

TDA8929T

22

Preliminary specification

Controller class-D audio amplifier

TDA8929T

2001 Dec 11

23

TDA8929T

15.6 Reference design bill of material

Table 1Two-chip class-D audio amplifier PCB (Version 2.1; 03-2001) for TDA8926J or TDA8927J and TDA8929T
(see Figs 12 and 13)

COMPONENT	DESCRIPTION	VALUE	COMMENTS
In1 and In2	Cinch input connectors		2 × Farnell: 152-396
Out1, Out2, V _{DD} ,	supply/output connectors		$2 \times \text{Augat 5KEV-02};$
GND and V _{SS}			1 × Augat 5KEV-03
S1	on/mute/off switch		PCB switch Knitter ATE 1 E M-O-M
U1	power stage IC	TDA8926J/27J	DBS17P package
U2	controller IC	TDA8929T	SO24 package
L2 and L4	demodulation filter coils	33 μH	2 × Sumida CDRH127-330
L5, L6 and L7	power supply ferrite beads		3 × Murata BL01RN1-A62
C1 and C2	supply decoupling capacitors for V_{DD} to V_{SS} of the controller	220 nF/63 V	2 × SMD1206
C3	clock decoupling capacitor	220 nF/63 V	SMD1206
C4	12 V decoupling capacitor of the controller	220 nF/63 V	SMD1206
C5	12 V decoupling capacitor of the power stage	220 nF/63 V	SMD1206
C6 and C7	supply decoupling capacitors for V_{DD} to V_{SS} of the power stage	220 nF/63 V	SMD1206
C8 and C9	bootstrap capacitors	15 nF/50 V	2 × SMD0805
C10, C11, C12 and C13	snubber capacitors	560 pF/100 V	4 × SMD0805
C14 and C16	demodulation filter capacitors	470 nF/63 V	2 × MKT
C15 and C17	resonance suppress capacitors	220 nF/63 V	2 × SMD1206
C18, C19, C20 and C21	common mode HF coupling capacitors	1 nF/50 V	4 × SMD0805
C22 and C23	input filter capacitors	330 pF/50 V	2 × SMD1206
C24, C25, C26 and C27	input capacitors	470 nF/63 V	4 × MKT
C28, C29, C30 and C31	common mode HF coupling capacitors	1 nF/50 V	2 × SMD0805
C32 and C33	power supply decoupling capacitors	220 nF/63 V	2×SMD1206
C34 and C35	power supply electrolytic capacitors	1500 μF/35 V	2 × Rubycon ZL very low ESR (large switching currents)
C36, C37, C38 and C39	analog supply decoupling capacitors	220 nF/63 V	4 × SMD1206
C40 and C41	analog supply electrolytic capacitors	47 μF/35 V	2 × Rubycon ZA low ESR
C43	diagnostic capacitor	180 pF/50 V	SMD1206
C44	mode capacitor	220 nF/63 V	SMD1206
D1	5.6 V zener diode	BZX79C5V6	DO-35
D2	7.5 V zener diode	BZX79C7V5	DO-35
R1	clock adjustment resistor	27 kΩ	SMD1206

TDA8929T

COMPONENT	DESCRIPTION	VALUE	COMMENTS
R4, R5, R6 and R7	input resistors	10 kΩ	4 × SMD1206
R10	diagnostic resistor	1 kΩ	SMD1206
R11, R12, R13 and R14	snubber resistors	5.6 Ω; >0.25 W	4 × SMD1206
R15 and R16	resonance suppression resistors	24 Ω	2 × SMD1206
R19	mode select resistor	39 kΩ	SMD1206
R20	mute select resistor	39 kΩ	SMD1206
R21	resistor needed when using an asymmetrical supply	10 kΩ	SMD1206
R22	resistor needed when using an asymmetrical supply	9.1 kΩ	SMD1206
R24	bias resistor for powering-up the power stage	200 kΩ	SMD1206

15.7 Curves measured in reference design

