mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2-channel Universal Time-to-Digital Converter

26th May 2010 Document-No.: DB_GP2_e V2.0

Published by acam-messelectronic gmbh [©] acam-messelectronic gmbh 2010

Disclaimer / Notes

The information provided by this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by acam for its use, nor for any infringements of patents or other rights of third parties that may result from its use. The information is subject to change without notice and is provided "as is" without warranty of any kind (expressed or implied). Picostrain is a registered trademark of acam. All other brand and product names in this document are trademarks or service marks of their respective owners.

Support

For a complete listing of direct sales, distributors and sales representatives visit the acam website at:

http://www.acam.de/company/distributors

For technical support you can contact the acam support team in the headquarter in Germany or the Distributor in your country. The contact details of acam in Germany are: sales@acam.de or by phone +49-7244-74190.

Table of Contents

1 Overview		1-4
2 Characterisitcs & Specifications	 2.1 Electrical Characteristics 2.2 Timings 2.3 Pin Description 2.4 Package Drawings 2.5 Power Supply 2.6 Register settings 	2-1 2-3 2-6 2-7 2-8 2-10
3 Measurement Mode 1	3.1 General Description 3.2 Measurement Flow	3-1 3-2
4 Measurement Mode 2	4.1 General Descriptionweis4.2 Measurement Flow4.3 Stop Masking	4-1 4-2 4-7
5 Details and Special Functions	 5.1 Oscillator 5.2 Fire-pulse Generator 5.3 Temperature Measurement 5.4 SPI-interface 5.5 Fast Initialization 5.6 Noise Unit 	5-1 5-4 5-7 5-10 5-11 5-11
6 Applications		6-1
7 Miscellaneous		7-1

TDC-GP2

TDC-GP2

1 Overview

1.1 Introduction

TDC-GP2 is the next generation of acam generalpurpose TDCs. Higher resolution and smaller package size make it ideal for cost sensitive industrial applications. With special functional blocks like a fire-pulse generator, stop-enable, temperature measurement, and clock control it is perfectly suited for ultrasonic flow-meter and heat-meter applications.

1.2 Features

Measurement Mode 1

- 2 channels with typ. 50 ps resolution rms
- Measurement range 3.5 ns to 1.8 µs (O to 1.8µs between stop channels)
- 15 ns pulse-pair resolution with 4-fold multihit capability
- 4 events can be measured arbitrarily against each other
- Trigger to rising or/and falling edge
- Windowing for precise stop enable

Measurement Mode 2

- 1 channel with typ. 50 ps resolution rms
- Measurement range 500 ns to 4 ms
- 2 x CLKHS pulse-pair resolution with 3-fold multihit capability
- Trigger to rising or/and falling edge
- Each of the 3 events can be assigned to an adjustable measuring window with 10ns resolution

Temperature Measurement

- 2 or 4 sensors
- PT500/PT1000 or higher
- Very high resolution: 16 Bit eff.
 (0.004 °C resolution for platinum sensors)
- Ultra low current (0.08 µA when measuring every 30 seconds)

General

- QFN 32 package
- I/O voltage 1.8 V to 5.5 V
- Core voltage 1.8 V to 3.6 V
- 1 MHz continuous data rate max.
- Temperature range 40 °C to 125 °C
- 4 wire SPI interface
- Fire pulse generator
- Clock calibration unit
- Precise stop enable by windowing
- Trigger to rising and/or falling edge

TDC-GP2

1.3 Blockdiagram

2 Characterisitcs & Specifications

2.1 Electrical Characteristics

Absolute Maximum Ratings

- 0.3 to 4.0	V			
- 0.3 to 7.0	V			
Continous current into Output-Pin (lout) 30				
Storage temperature (Tstg) - 65 to 150				
max.125	°C			
	- 0.3 to 4.0 - 0.3 to 7.0 30 - 65 to 150 max.125			

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vcc	Core supply voltage*	Vio > Vcc	1.8		3.6	V
Vio	I/O supply voltage		1.8		5.5	V
tri	Normal Input Rising Time				50	ns
tfa	Normal Input Falling Time				50	ns
tri	Schmitt Trigger Rising Time				5	ms
tfa	Schmitt Trigger Falling Time				5	ms
Та	Ambient Temperature	Tj must not exceed	-40		120	°C
		125°C				

*including the oscillator pins XIN, XOUT, Clk32In, Clk32Out

DC Characteristics (Vio = Vcc = 3.3 V \pm 0.3 V, Tj = -40 to +85°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
132	Current 32 kHz	lcc + lio, only 32kHz os-		4.5		μA
		cillator running,				
		Vcc = 3.6 V				
lhs	Current 4 Mhz	lcc + lio, only ClkHS run-		260		μA
		ning cont. at 4MHz,				
		Vcc = 3.6 V				
ltmu	Current time measuring	only during active time		15		mA
	unit	measurement				
lddq	Quiescent current	all clocks off, Vio = Vcc =		<150		nA
		3.6 V @ 85 °C				
П	Input Leakage Current		-1		+1	μA
Voh	High Level Output Voltage	loh= tbd mA Vio=Min.	Vio-			V
			0.4			

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vol	Low Level Output Voltage	lol = tbd mA, Vio=Min			0.4	V
Vih	High Level Input Voltage	LVTTL Level, Vio = Max.	2.0			V
Vil	Low Level Input Voltage	LVTTL Level, Vio = Min.			0.8	V
Vth	High Level Schmitt Trigger		1.1		2.4	V
	Voltage					
Vtl	Low Level Schmitt Trigger		0.6		1.8	V
	Voltage					
Vh	Schmitt Trigger Hysteresis		O.1			V

Terminal Capacitance

Symbol	Terminal	Condition	Rated Value			Unit
			Min.	Тур.	Max.	
Ci	Input	measured @ Vcc = Vio,			10	рF
Со	Output	f = 1 MHz,			10]
Cio	Bidirectional	Ta = 25°C			10	

Time Measuring Unit

Symbol	Terminal	Condition	R	Rated Value		Unit
			Min.	Тур.	Max.	
	LSB	Vio = Vcc = 3.3 V	-40 °C	25 °C	85 °C	ps
			3.6 V	3.3 V	3.0 V	
			35	63	111	
		Vio = Vcc = 2.5 V	-40 °C	25 °C	85 °C	
			2.75 V	2.5 V	2.25 V	
			38	76	156	
	Standard Deviation	Vio=3.3 V, Vcc =3.3 V	2.75 V	2.5 V		
		Ta = 25°C	-	50	-	

Temperature Measuring Unit

Symbol	Terminal	Condition	R	Rated Value		Unit
			Min.	Тур.	Max.	
	Resolution RMS	Vio = Vcc =3.3 V		16.0		Bit
	SNR	PT1000		96		dB
	Absolute Gain-Error	150 nF Capacitance		0,1		%
	Gain-Drift vs. Vio			0,08		%/V
	Gain-Drift vs. Temp			0,0008		%/K
	Uncalibrated Offset			<0.01		%
	Offset Drift vs.			<0,2		ppm/K
	Temp					
	PSRR			>100		dB

2.2 Timings

At Vcc = 3.3 V \pm 0.3 V, ambient temperature -40 °C to +85 °C unless otherwise specified

Oscillator

Symbol	Parameter	Min.	Тур.	Max.	Unit
Clk32	32 kHz reference oscillator		32,768		kHz
toszst	Oscillator start-up time with ceramic resonator		200		μs
toszst	Oscillator start-up time with crystal oscillator		5		ms
CIkHS	High-speed reference oscillator	2		8	MHz

Serial Interface

Symbol	Parameter	Max. @ Vio =			Unit
		2.0 V	2.5 V	3.3 V	
fclk	Serial clock frequency	10	20	25	MHz

Symbol	Parameter	Min. @ \	Min. @ Vio =		Unit
		2.0 V	2.5 V	3.3 V	
tpwh	Serial clock, pulse width high	50	25	20	ns
tpwl	Serial clock, pulse width low				ns
tsussn	SSN enable to valid latch clock	20	40	10	ns
tpwssn	SSN pulse width between write cycles	50	30	20	ns
thssn	SSN hold time after SCLK falling	70	40	25	ns
tsud	Data set-up time prior to SCLK falling	10	5	5	ns
thd	Data hold time before SCLK falling	10	5	5	ns

TDC-GP2

Symbol	Parameter	Max. @ Vio =			Unit
		1.8 V	2.5 V	3.3 V	
tvd	Data valid after SCLK rising	30	20	16	ns

Serial Interface (SPI compatible, Clock Phase Bit =1, Clock Polarity Bit =0): Figure 2-1: SPI Write

Figure 2-2: SPI Read SSN SCK SI LSB MSB 1 6 t_{hd} so MSB MSB-1 1 LSB OPCODE DATA

8-Bit Opcodes:

MSB							LSB	Description
1	0	0	0	0	ADR2	ADR1	ADRO	Write into address ADR
1	0	1	1	0	ADR2	ADR1	ADRO	Read from address ADR
0	1	1	1	0	0	0	0	Init
0	1	0	1	0	0	Ο	0	Power On Reset
0	0	0	0	0	0	Ο	1	Start_Cycle
0	0	0	Ο	0	0	1	0	Start_Temp
0	0	0	0	0	0	1	1	Start_Cal_Resonator
0	0	0	0	0	1	0	0	Start_Cal_TDC

Disable Timings

Figure 2-3:

Spec	Description	Min (ns)	Max (ns)
tS-EN	Enable Setup Time	5 ns	-
tSH-EN	Enable Hold Time	5 ns	-

Reset Timings

Figure 2-4:

Spec	Description	Min (ns)	Max (ns)
tph	Reset pulse width	50 ns	-
trfs	Time after rising edge of reset	200 ns	-
	pulse before hits are accepted		

2.3 Pin Description

No.	Name	Description	Buffer type	Value	lf not
					used
1	Xin	Oscillator driver in			GND
2	Xout	Oscillator driver out			
3	Vio	I/O – supply voltage			
4	GND	Ground			
5	Fire1	Fire pulse generator output 1	48 mA		
6	Fire2	Fire pulse generator output 2	48 mA		
7	Fire_In	Signal input for quasi "Sing Around"			GND
8	INTN	Interrupt flag	12 mA	LOW active	
9	SSN	Slave select	Schmitt trigger	LOW active	
10	SCK	Clock serial interface	Schmitt trigger		
11	SI	Data input serial interface	Schmitt trigger		
12	SO	Data output serial interface	12 mA tristate		
13	RSTN	Reset input	Schmitt trigger	LOW active	
14	Vcc	Core supply voltage			
15	Clk32Out	Output 32 kHz clock generator			n. c.
16	Clk32ln	Input 32 kHz clock generator			GND

acam-messelectronic gmbh - Am Hasenbiel 27 - D-76297 Stutensee-Blankenloch - Germany - www.acam.de

TDC-GP2

No.	Name	Description	Buffer type	Value	lf not
					used
17	SenseT	Sense input temperature measure-	Schmitt trigger		GND
		ment			
18	LoadT	Load output temperature measure-	24 mA		n.c.
		ment			
19	PT4	Port 4 temperature measurement	48 mA		
20	PT3	Port 3 temperature measurement	48 mA		
21	GND	Ground			
22	Vio	I/O – supply voltage			
23	PT2	Port 2 temperature measurement	48 mA		
24	PT1	Port 1 temperature measurement	48 mA		
25	En_Stop2	Enable pin stop input 2	Schmitt trigger	HIGH active	Vio
26	En_Stop1	Enable pin stop input 1	Schmitt trigger	HIGH active	Vio
27	Stop2	Stop input 2			GND
28	GND	Ground			
29	Vcc	Core supply voltage			
30	Stop1	Stop input 1			GND
31	Start	Start input			
32	En_Start	Enable pin start input	Schmitt trigger	HIGH active	Vio

2.4 Package Drawings

Suitable socket: Plastronics 32QN50S15050D

Thermal resistance

Roughly 40 K/W at 0 m/s air flow, 37 K/W at 1 m/s air flow, 35 K/W at 2m/s air flow (values just for reference).

TDC-GP2

Soldering Temperature Profile

The temperature profile for infrared reflow furnace (in which the temperature is the resin's surface temperature) should be maintained within the range described below.

Maximum temperature

The maximum temperature requirement for the resin surface, given 260°C as the peak temperature of the package body's surface, is that the resin surface temperature must not exceed 250°C for more than 10 seconds. This temperature should be kept as low as possible to reduce the load caused by thermal stress on the package, which is why soldering for short periods only is recommended. In addition to using a suitable temperature profile, we also recommend that you check carefully to confirm good soldering results.

2.5 Power Supply

Supply voltage

Although the TDC-GP2 is a fully digital circuit, some analog measures affect the circuit. The reason is that the TDC is based on the internal analog measure ,propagation delay time' which is influenced by temperature and supply voltage. A good layout of the supply voltage is essential for good measurement results. It should be high capacitive and of low in-ductance.

The TDC-GP2 provides two pairs of power supply terminals:

- Vio I/O supply voltage
- Vcc Core supply voltage

All ground pins should be connected to a ground plane on the printed circuit board. Vio and Vcc should be provided by a battery or fixed linear voltage regulator. Do not use switched regulators to avoid disturbances caused by the I/O supply.

TDC-GP2

The measurement quality of a time-to-digital converter depends on a good power supply. The chip sees mainly pulsed current and therefore a sufficient bypassing is mandatory:

Vcc 100 μF (minmum 47 μF)

Vio 10 μ F (minimum 1 μ F)

The supply voltage should be provided through analog regulators. We strongly recommend not to use switch mode power supplies.

Current consumption

The current consumption is the sum from different parties (all data for Vio = Vcc = 3.6V):

lddq	< 150 nA	Quiescent current,
132	typ. 4.5 μA	Current into the 32 kHz oscillator, turned on only if the 32 kHz oscillator is connected
lhs	typ. 260 µA/s * (active runtime)	Current into the high speed oscillator, Example: In ultrasonic flow-meters the high-speed oscillator is on for about 2ms only. The average current consumption is 260 μ A/s * 2 ms = 0.52 μ A
ltmu	typ. 15 mA/s * (active measuring time)	Current into the time measuring unit, In measurement range 1 the time measuring unit is active for the start-stop time inter val plus the calibration time interval of 2 periods of the refe rence clock per measurement. In measurement range 2 the time measuring unit is on for average 4 periods of the reference clock per measurement, two for the time measurement and two for calibration. Example: With 10 measurements per second in measurement range 2 and a 4 MHz reference clock the time measuring unit is active for only about 10 μ s. The average current is 15 mA/s * 10 μ s = 0.150 μ A.
lalu	typ. 7 nA per calculation	Current into ALU during data proccesing including a calibration calculation. Example: At 1000 measurements per second with 3 stops per

start the ALU average current is 7 nA * 3000 = 21 $\mu A.$

2.6 Register settings

Service bits are for acam testing and security purposes only, Please use the recommended values.

2.6.1 Write registers

Default values in second rows

Bit	RegO	(*)	Reg1	(*)	Reg2	(*)	Reg3	(*)	Reg4	(*)	Reg5	(*)
23	FIRE#	0	HIT2	0	EN_INT	0	S.C.	0	S.C.	0	CONF_FIRE	0
22		0		1		0	S.C.	0	S.C.	0		0
21		0		0		1	EN_ERR_VAL	0	S.C.	1		0
20		0		1	RFEDGE2	0	SEL_TIMO_	1	S.C.	0	EN_STARTNOISE	0
19	DIV_FIRE	0	HIT1	0	RFEDGE1	0	MR2	1	S.C.	0	DIS_PhaseNoise	0
18		0		1	DELVAL1	0	DELVAL2	0	DELVAL3	0	REPEAT_FIRE	0
17		0		0		0		0		0		0
16		0		1		0		0		0		0
15	CALRES#	0	EN_FAST_INIT	0		0		0		0	PHASE_FIRE	0
14		0	S.C.	1		0		0		0		0
13	ClkHSDiv	0	HITIN2	0		0		0		0		0
12		0		0		0		0		0		0
11	START_CIKHS	0		0		0		0		0		0
10		1	HITIN1	0		0		0		0		0
9	PORT#	1		0		0		0		0		0
8	TCycle	0		0		0		0		0		0
7	No_FAKE	0	n.c	0		0		0		0		0
6	SelClkT	1	n.c	0		0		0		0		0
5	Calibrate	1	n.c	0		0		0		0		0
4	DisAutoCal	0	n.c	0		0		0		0		0
З	MRange2	1	n.c	0		0		0		0		0
2	NEG_STOP2	0	n.c	0		0		0		0		0
1	NEG_STOP1	0	n.c	0		0		0		0		0
0	NEG_START	0	n.c	0		0		0		0		0

s.c. = Special acam configuration bits, n.c. = not in use

(*) = Default value after Power On Reset

Short description of the bits:

Bits	Name	Descritpion	Value
Reg O			
0	NEG_START	Negation start input	O = non-inverted input signal – rising edge 1 = inverted input signal – falling edge
1	NEG_STOP1	Negation stop 1 input	O = non-inverted input signal – rising edge 1 = inverted input signal – falling edge
2	NEG_STOP2	Negation stop 2 input	O = non-inverted input signal – rising edge 1 = inverted input signal – falling edge
3	MRange2	Switch to measurement range 2	0 = measurement range 1 1 = measurement range 2
4	DisAutoCal	Enables/disables auto-calibration run in the TDC	0 = auto-calibration after measurement1 = auto-calibration disabled
5	Calibrate	Enables/disables calibration calculation in the ALU	O = calibration off (only MR 1) 1 = calibration on
6	SelClkT	Select reference signal for internal cycle clock for tem-perature measurement	O = use 32,768 kHz as cycle clock 1 = use 128 * CLKHS as period for cycle clock (32µs with 4 MHZ high speed clock signal)
7	FAKE#	Number of dummy cycles at the beginning of a tempera-ture measurement	0 = 2 Fake measurements 1 = 7 Fake measurements
8	TCycle	Sets cycle time for tempera-ture measurement	O = 128 μ s cycle time @ 4 MHz 1 = 512 μ s cycle time @ 4 MHz (recommended)
9	PORT#	Sets number of ports used for temperature measure-ment	O = 2 temperature ports (PT1 and PT2) 1 = 4 temperature ports
10-11	START_CLKHS	Switch on high-speed oscilla-tor	O = Oscillator off 1 = Oscillator on 2 = settling time = 640 μs 3 = settling time = 1280 μs (see Bug Report)
12-13	ClkHSDiv	Sets predivider for CLKHS	O = divided by 1 1 = divided by 2 2 = divided by 4 3 = divided by 4
14-15	CALRES#	Sets number of periods used for calibrating the ceramic resonator	O = 2 periods = 61.035 μs 1 = 4 periods = 122.07 μs 2 = 8 periods = 244.14 μs 3 = 16 periods = 488.281 μs
16-19	DIV_FIRE	Sets predivider for internal clock signal of fire pulse generator	O = not permitted1 = divided by 2 2 = divided by 3 3.= divided by 4 15 = divided by 16

20-23	FIRE#	Sets number of pulses gen-erated	O = off
		by fire pulse generator	1 = 1 pulse
			2 = 2 pulses
			3 = 3 pulses
			15 = 15 pulses

Reg 1				
8-10	HITIN1	Number of expected hits on channel 1	O = stop channel 1 disab 1 = 1 hit 2 = 2 hits 3 = 3 hits 4 = 4 hits 5 to 7 = not permitted	led
11-13	HITIN2	Number of expected hits on channel 2	O = stop channel 2 disab 1 = 1 hit 2 = 2 hits 3 = 3 hits 4 = 4 hits 5 to 7 = not permitted	led
15	EN_FAST_INIT	Enables fast init operation	0 = Fast init mode disabl 1 = Fast init mode enabl	ed ed
16-19	HIT1	Defines operator for ALU data post-processing MRange1: HIT1-HIT2 MRange2: HIT2-Start	MRange1: O = Start 1 = 1. Stop Ch1 2 = 2. Stop Ch1 3 = 3. Stop Ch1 4 = 4. Stop Ch1 5 = no action 6 = Cal1 Ch1 7 = Cal2 Ch1 9 = 1. Stop Ch2 A = 2. Stop Ch2 B = 3. Stop Ch2 C = 4. Stop Ch2	MRange2: 1 = Start
20-23	HIT2	Defines operator for ALU data post-processing MRange1: HIT1-HIT2 MRange2: HIT2-Start	MRange1: O = Start 1 = 1. Stop Ch1 2 = 2. Stop Ch1 3 = 3. Stop Ch1 4 = 4. Stop Ch1 5 = no action 6 = Cal1 Ch1 7 = Cal2 Ch1 9 = 1. Stop Ch2 A = 2. Stop Ch2 B = 3. Stop Ch2 C = 4. Stop Ch2	MRange2: 2 = 1. Stop Ch1 3 = 2. Stop Ch1 4 = 3. Stop Ch1

Reg 2			
O-18	DELVAL1	Delay value for internal stop ena- ble unit, hit 1 channel 1. Fixed point number with 14 integer and 5 fractional digits in multip- les of Tref	DELVAL1 = 0 to 16383.96875
19	RFEDGE1	Edge sensitivity channel 1	O = rising or falling edge 1 = rising and falling edge
20	RFEDGE2	Edge sensitivity channel 1	O = rising or falling edge 1 = rising and falling edge
21-23	EN_INT	Activates interrupt sources wired by OR	Bit 23 = Timeout interrupt enable Bit 22 = End Hits interrupt enable Bit 21 = ALU interrupt enable

Reg 3			
0-18	DELVAL2	Delay value for internal stop enable unit, hit 2 channel 1. Fixed point number with 14 integer and 5 fractional digits in multiples of Tref	DELVAL1 = 0 to 16383.96875
19-20	SEL_TIMO_MR2	Select predivider for timeout in measurement range 2	0 = 64 μs 1 = 256 μs 2 = 1024 μs 3 = 4096 μs @ 4 MHz CIkHS
21	EN_ERR_VAL	Timeout forces ALU to write OxFFFFFFFF into the output register	O = disabled 1 = enabled

Reg 4						
0-18	DELVAL1	Delay value for internal stop ena- ble unit, hit 3 channel 1. Fixed point number with 14 integer and 5 fractional digits in multip- les of Tref	DELVAL1 = 0 to 16383.96875			

Reg 5					
0-15	PHASE_FIRE	Enables phase reversing for each pulse of a sequence of up to 15 possible pulses	0 = no inversion 1 = inversion		
16-18	REPEAT_FIRE	Number of pulse sequnce repeti- tion for "quasi-sing-arround"	0 = no signal repetition 1 = 1 signal repetition 2 = 2 signal repetition 7 = 7 signal repetition		
19	DIS_PHASENOISE	Phase noise unit, has to be disa- bled, See bug report section 7.2	1 = disable phase shift Setting 1 is mandatory		
20	EN_STARTNOISE	Enables additional noise for start channel	1 = switch on noise unit		
21-23	CONF_FIRE	Output configuration for pulse generator	Bit 23 = 1: negate output Fire2 Bit 22 = 1: disable output Fire2 Bit 21 = 1: disable output Fire1		

2.6.2 Read registers / Output data format

ADR	Symbol	Bits	Description							
0	RES_O	32	Measurement result 1, fixed-point number with 16 integer and 16 fractional digits 2 ¹⁵ 2 ⁰ ,2 ⁻¹ 2 ⁻¹⁶							
1	RES_1	32	Measure	Measurement result 2, fixed-point number with 16 integer and 16 fractional digits						
2	RES_2	32	Measurement result 3, fixed-point number with 16 integer and 16 fractional digits							
3	RES_3	32	Measurement result 4, fixed-point number with 16 integer and 16 fractional digits							
4	STAT	16	15 - 13	12	11	10	9	8 - 6	5 - 3	2-0
			n.c.	Error short	Error open	Timeout Precounter	Timeout TDC	# of hits Ch2	# of hits Ch1	Pointer result register
5	REG_1	8	Content of highest 8 Bits of write register 1, to be used for testing the communication							

The data structure and the occupancy of the result registers depends on the operation mode and whether calibrated or non-calibrated data are stored. Several cases must be distinguished:

- Only in measurement range 1 negative results are possible.
- In measurement range 2 only positive results are possible, given as unsigned numbers.
- A non-calibrated measurement is only possible in measurement range 1.
- In measurement range 1 with calibrated data (ALU) the time intervals that have to be measured can not exceed twice the period of the calibration clock. When measuring bigger time intervals an ALU - overflow will occur and OxFFFFFFFF is written in the appropriate result register.

a. Measurement range 1 with calibrated data (Calibrate = 1)

The results are given in multiples of the internal reference clock (= external reference clock divided by 1, 2 or 4 (DIV_CLKHS)). Calibrated data are 32 bit fixed point numbers with 16 integer bits and 16 fractional bits. Any calibrated result covers therefore 1 result register. The serial output begins with the highest bit (2^{15}) and ends with the lowest one ($2^{\cdot 16}$). The numbers are available in complements of 2.

Time = RES_X * T_{ref} * 2^{CIkHSDiv} = RES_X * T_{ref} * N , with N = 1, 2 or 4

Time < 2 * T_{raf} * 2^{CIKHSDiv}

b. Measurement range 1 without calibration (Calibrate = 0)

Non-calibrated data are of the type ,Signed Integer' and are stored as a 16 bit value in the high word of the result registers. The bits of the low word are set to zero. The result is represented as number of LSB and is available in complements of 2.

Time = RES_X * LSB ~ RES_X * 65 ps

c. Measurement range 2

In measurement range 2 the TDC-GP2 only supports calibrated measurement. The results are given in multiples of the internal reference clock (= external reference clock divided by 1, 2 or 4 (DIV_CLKHS)). Calibrated data are 32 bit fixed point numbers with 16 integer bits and 16 fractional bits. Any calibrated result covers therefore 1 result register. The serial output begins with the highest bit (2¹⁵) and ends with the lowest one (2⁻¹⁶). The numbers are available in complements of 2.

Time = RES_X * T_{ref} * 2^{CIkHSDiv} = RES_X * T_{ref} * N , with N = 1, 2 or 4

d. Temperature measurement

Discharge tiem in the same format as in c. measurement mode 2.

2.6.3 Status register

Bits	Name Description		Values
2 – 0	Pointer result register	Pointer to the next free result register	
5 – 3	# of hits Ch 1	Number of hits registered on channel 1	
8 – 6	# of hits Ch 2	Number of hits registered on channel 2	
9	Timeout TDC	Indicates an overflow of the TDC unit	1 = overflow
10	Timeout Precounter	Indicates an overflow of the 14 bit precounter in MR 2	1 = overflow
11	Error open	Indicates an open sensor at temperature measurement	1 = open
12	Error short	Indicates a shorted sensor at temperature measurement	1 = short

TDC-GP2

3 Measurement Mode 1

3.1 General Description

- 2 stop channels referring to one start channel
- Each of typ. 50 ps RMS resolution
- LSB width typ. 65 ps
- 15 ns pulse pair resolution
- 4-fold multihit capability for each stop channel
- Measurement range 3.5 to 1.8 µs (O to 1.8µs between stop channels)
- Selectable rising/falling edge sensitivity for each channel
- Enable pins for powerful windowing functionality
- The possibility to arbitrarily measure all events against each other

Digital TDCs use internal propagation delays of signals through gates to measure time intervals with very high precision. Figure 5 clarifies the principal structure of such an absolute-time TDC. Intelligent circuit structures, redundant circuitry and special methods of layout on the chip make it possible to reconstruct the exact number of gates passed by the signal. The maximum possible resolution strongly depends on the maximum possible gate propagation delay on the chip.

The measuring unit is actuated by a START signal and stopped by a STOP signal. Based on the position of the ring oscillator and the coarse counter the time interval between START and STOP is calculated with a 20 Bit measurement range.

The BIN size (LSB) is typically 65 ps at 3.3 V and 25 °C ambient temperature. The RMS noise is about 50 ps (0.7 LSB). The gate propagation delay times strongly depend on temperature and voltage. Usually this is solved doing a calibration. During such a calibration the TDC measures 1 and 2 periods of the reference clock.

The measurement range is limited by size of the counter:

tyy = BIN x 26224 ~ 1.8 μs

TDC-GP2

	Time (Condition)	Description	
tph	2,5 ns (min.)	Minimum pulse width	$\rightarrow t_{ph} \leftarrow \rightarrow \leftarrow t_{xx}$
tpl	2,5 ns (min.)	Minimum pulse width	
tss	3.5 ns ns (min)	Start to Stop	Stop 1
	1.8 µs (max.)		
trr	15 ns (typ.)	Rising edge to rising edge	Stop 2 L L L L
tff	15 ns (typ.)		INT
tva	560 ns uncalibrated	Last hit to data valid	Figure 3-2
	4.6 µs calibrated		
txx	No timing limits		
tyy	1,8 µs (max)	Max. measuring range	

Input circuitry

Each input separately can be set to be sensitive to rising or falling edge or both edges. This is done in register O, Bits O to 2. (NEG_START, NEG_STOP1, NEG_STOP2) and register 2, Bit 19&20, RFEDGEx.

Furthermore all Start/Stop-inputs support a high active enable pin.

3.2 Measurement Flow

Figure 3-3

3.2.1 Configuration

At the beginning the TDC-GP2 has to be configured. The main settings for measurement range 1 are:

a. Select measurement range1

setting register O, Bit3, MRange2 = O.

b. Select the reference clock

(see also section 5.1)

Register O, Bits 10&11, START_CLKHS defines the switch-on behavior of the high-speed clock. If only the 32kHz is used this is be set to "O". If only the high-speed clock is used this is be set to "1"(conti-

nuously on). In case both oscillators are used for current saving reasons this should be set to "2" for ceramic oscillators and to "3" for quartz oscillators".

Register O, Bits 12&13, ClkHSDiv sets an additional internal divider for the reference clock (1,2 or 4). This is important for calibrated measurements in measurement range 1 because the ALU works correctly only if 2*Tref(intern) is bigger than the maximum time interval to be measured. Otherwise the ALU output is OxFFFFFFFF.

Make also sure that $2*Tref(intern) < 1.8 \ \mu s$ to avoid a timeout during calibration.

c. Set the number of expected hits

In register 1, Bits 8 to 10 and 11 to 13, HITIN1 and HITIN2 the user has to define the number of hits the TDC-GP2 has to wait for. A maximum of 4 on each channel is possible. The TDC-GP2 measures until the set number of hits is registered or a timeout occurs.

d. Select calibration

As the BIN size varies with temperature and voltage the TDC-GP2 ALU can internally calibrate the results. This option is switched on by setting register O, Bit5, Calibrate = "1". It is recommended to do this.

For the calibration the TDC measures 1 and 2 cycles of the reference clock. The two data are stored as Cal1 and Cal2.

There are two ways to update the calibration data Cal1 and Cal2:

- Separate calibration by sending opcode Start_Cal_TDC via the SPI interface

- Automatic update by setting register O, Bit 4, DisAutoCal = "O". In most applications this will be the preferred setting.

e. Define ALU data processing

While the TDC unit can measure up to 4 hits on each channel the user is free in his definition what the ALU shall calculate. The settings are done in register 1, Bits 16 to 19 and 20 to 23, HIT1 and HIT2. Both parameters can be set to:

O = Start

 1 = 1. Stop Ch1
 9 = 1. Stop Ch2

 2 = 2. Stop Ch1
 A = 2. Stop Ch2