imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

acam-messelectronic gmbH

is now

Member of the ams Group

The technical content of this acam-messelectronic document is still valid.

Contact information:

Headquarters:

ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

Data Sheet

TDC-GP22

Universal 2-Channel Time-to-Digital Converters Dedicated to Ultrasonic Heat & Water Meters

March 13th 2014 Document-No: DB_GP22_en VO.9

Published by acam-messelectronic gmbh

©acam-messelectronic gmbh 2014

Disclaimer / Notes

"Preliminary" product information describes a product which is not in full production so that full information about the product is not available yet. Therefore, acam-messelectronic gmbh ("acam") reserves the right to modify this product without notice. The information provided by this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by acam for its use, nor for any infringements of patents or other rights of third parties that may result from its use. The information is subject to change without notice and is provided "as is" without warranty of any kind (expressed or implied). All other brand and product names in this document are trademarks or service marks of their respective owners.

Support / Contact

For a complete listing of Direct Sales, Distributor and Sales Representative contacts, visit the acam web site at:

http://www.acam.de/sales/distributors/

For technical support you can contact the acam support team in the headquarters in Germany or the Distributor in your country. The contact details of acam in Germany are:

support@acam.de or by phone +49-7244-74190.

Content

1 Ove	erview
1.1	Features
1.2	Blockdiagram 1-4
1.3	Ordering Numbers
2 Cha	aracteristics & Specifications
2.1	Electrical Characteristics 2-1
2.2	Converter Specification
2.3	Timings 2-6
2.4	Pin Description
2.5	Package Drawings 2-11
2.6	Power Supply
3 Reg	gisters & Communication
3.1	Configuration registers
3.2	Read registers
3.3	EEPROM
3.4	SPI-interface
4 Cor	nverter Frontend
4.1	TDC - Measurement mode 1 4-1
4.2	TDC - Measurement mode 2 4-9
4.3	Analog Input Section
4.4	First Wave Mode
4.5	Temperature Measurement
5 Det	tails and Special Functions
5.1	Oscillator
5.2	Fire Pulse Generator
5.3	Fast Initialization
5.4	Noise Unit
5.5	EMC Measures
6 Ap	olications
6.1	Ultrasonic Heat Meter
7 Mis	scellaneous
7.1	Bug Report
7.2	Last Changes

TDC-GP22

1-2

1 Overview

TDC-GP22 is next generation's upgrade for TDC-GP21. It is a 100% pin-to-pin and functional compatible upgrade of TDC-GP21, with an extended functionality. Especially the new first-wave detection capability makes the TDC-GP22 perfectly suited for ultrasonic water meters with their high dynamics. The programmable offset range of the comparator is increased to \pm 35 mV and the offset is automatically set back to zero after the first wave detection. Measuring the relative pulse width of the first wave gives the user an indication of the strength of the received signal. This can be used for adopting the system to long-term signal attenuation or for bubble detection. The multi-hit data processing and data read-out is simplified compared to TDC-GP21.

All in all, the TDC-GP22 is a further improvement and simplification for the design of ultrasonic heat meters and a necessary step for compact ultrasonic water meters.

1.1 Features

Measurement mode 2

- 1 channel with typ. 90 ps resolution
- Double resolution mode with 45 ps, Quad resolution mode with 22 ps resolution
- Measurement range 700 ns to 4 ms
- 3-fold multihit capability with automatic processing of all 3 data

Analog Input Circuit

- Chopper-stabilized low-offset comparator, programmable, ±35 mV
- First-wave detection: offset set zero automatically after first wave, hit selection relative to first wave
- First-wave pulse-width measurement for signal monitoring and bubble detection
- Integrated analog switches for input selection
- External circuit is reduced to 2 resistors and 2 capacitors

Temperature Measurement Unit

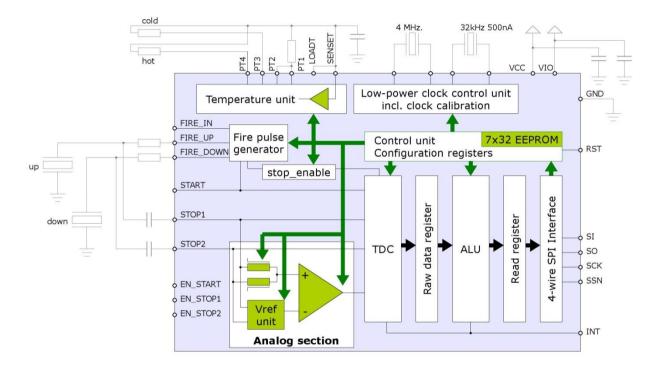
- 2 or 4 sensors, PT500/PT1000 or higher
- Schmitt trigger integrated
- 16-Bit eff. with external Schmitt trigger, 17.5-Bit eff. with integrated low noise Schmitt trigger
- Ultra low current (0.08 µA when measuring every 30 seconds)

Special Functions

- Fire pulse generator, up to 127 pulses
- Trigger to rising and/or falling edge
- Precise stop enable by windowing
- Low-power 32 kHz oscillator (500 nA)
- Clock calibration unit
- 7x32 Bit EEPROM

Measurement mode 1

- 2 channels with typ. 90 ps resolution
- channel double resolution with typ. 45 ps
- Range 3.5 ns (O ns) to 2.5 µs
- 20 ns pulse-pair resolution, 4-fold multihit



• Up to 500 000 measurements per second in measurement mode 1

General

- 4-wire SPI interface
- 500 kHz continuous data rate max.
- I/O voltage 2.5 V to 3.6 V
- Core voltage 2.5 V to 3.6 V
- Temperature range 40 °C to +125 °C
- QFN 32 Package

1.2 Blockdiagram

1.3 Ordering Numbers

1-4

Part#	Package I	Package Qty; Carrier	Order number		
TDC-GP22	QFN32	5000/3000	; T&R	MNR 1950	
TDC-GP22	QFN32	490; Tray		MNR 1949	
GP22-EVA-KIT	System	1; Box		MNR 1951	
This product is Dell	C assessiont and	deee net centain a			

This product is RoHS compliant and does not contain any Pb.

2 Characteristics & Specifications

2.1 Electrical Characteristics

Absolute Maximum Ratings

Supply voltage

	Vcc vs. GND	- 0.3 to 4.0	V
	Vio vs. GND	- 0.3 to 4.0	V
	Vin	- 0.5 to V_{cc} + 0.5	V
Storage temperature (T _{stg})		- 55 to 150	°C
ESD rating (HBM), each pin		> 2	kV
Junction temperature (T _i)		max.125	°C

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{cc}	Core supply voltage ¹	$V_{io} = V_{cc}$	2.5		3.6	V
Vio	I/O supply voltage		2.5		3.6	V
tri	Normal input rising time				200	ns
t _{fa}	Normal input falling time				200	ns
tri	Schmitt trigger rising time				5	ms
t _{fa}	Schmitt trigger falling time				5	ms
Ta	Ambient temperature	T; must not exceed 125°C	-40		125	°C
Rth(j-a)	Thermal resistance	junction-ambient		28		K/W

¹ including the oscillator pins XIN, XOUT, Clk32In, Clk32Out

DC Characteristics (V $_{io}$ = V $_{cc}$ = 3.0 V, T $_{j}$ = -40 to +85°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
1 32	Current 32 kHz	l∞ + l₀, only 32 kHz oscillator running		1.0		μA
hs	Current 4 MHz oscillator	$V_{cc} = V_{io} = 3.6 V$ = 3.0 V off		200 130 < 1		μΑ μΑ nA
ltmu	Current time measuring unit	only during active time measurement		4		mA
lddq	Quiescent current	all clocks off, @ 85 °C		< 0.1		μA
lo	Operating current	TOF_UP/DOWN, 1/s Temperature average, PT1000, 1/30s		1.1 0.15		μA
Voh	High level output voltage	loh= tbd mA Vio=Min.	0.8Vio			V
Vol	Low level output voltage	loi = tbd mA, Vio=Min			0.2Vio	V
Vih	High level input voltage	LVTTL Level, Vio = Max.	0.7Vio			V
Vil	Low level input voltage	LVTTL Level, Vio = Min.			0.3Vio	V
V_{th}	High level Schmitt trigger voltage		0.7Vio			V
Vtl	Low level Schmitt trigger voltage				0.3Vio	V
Vh	Schmitt trigger hysteresis			0.28		V

2-2

Terminal Capacitance

Symbol	Terminal	Condition	Rated Va	Rated Value		Unit
			Min.	Typ.	Max.	
Ci	Digital input	measured @ $V_{cc} = V_{io}$,		7		pF
Co	Digital output	f = 1 MHz, T₃ = 25°C				
Cio	Bidirectional			9		
	PT ports			t.b.d.		
	Analog in			t.b.d.		

Analog Frontend

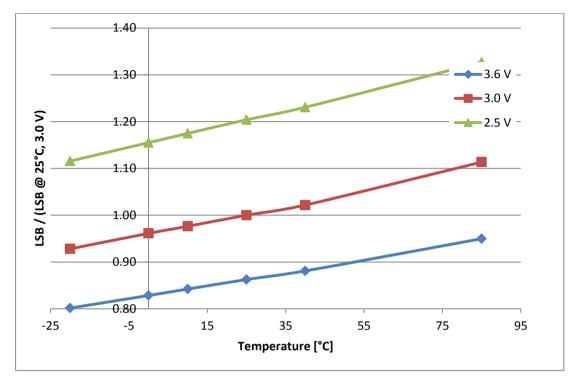
Symbol	Terminal	Condition	Rated Va	ated Value		Unit
			Min.	Typ.	Max.	
	Comparator input offset voltage (chopper stabilized)			< 1	2	mV
Rdson(AS)	Switch-on resistance of analog switches at STOP1/STOP2 inputs			200		Ohm
Rdson(FIRE)	Switch-on resistance of FIRE_UP, FIRE_DOWN output buffers	Symmetrical outputs, Rdson(HIGH) = Rdson(LOW)		4		Ohm
lfire	Output current FIRE_UP, FIRE_DOWN output buffers			48		mA

EEPROM

Symbol	Terminal	Condition	Minimum Value	Unit
	Data retention @ 85°C	normal	10	years
		with Error correction	practically endless	

TDC-GP22

2.2 Converter Specification


Time Measuring Unit ($V_{io} = V_{cc} = 3.0$ V, $T_j = 25^{\circ}$ C)

Symbol	Terminal	Condition	Rated Val	le		Unit
			Min.	Typ.	Max.	
LSB	Resolution (BIN-Size)	Measurement mode 1 & 2: DOUBLE_RES = 0 DOUBLE_RES = 1		90 45		ps
		Measurement mode 2: QUAD_RES = 1		22		ps
	Standard deviation Measurement Mode 1	DOUBLE_RES = 0 Delay = 200ns Delay = 1µs DOUBLE_RES = 1		45 72 35		ps
	Standard deviation Measurement Mode 2	Delay = 200ns DOUBLE_RES = 0 Delay = 2µs Delay = 100µs DOUBLE_RES = 1 Delay = 2µs Delay = 100µs QUAD_RES = 1 Delay = 2µs Delay = 100µs		54 70 50 62 39 62		ps
τm	Measurement range	Measurement mode 1	3.5 ns		2.4 μs =26224 *LSB	
		Measurement mode 2	700 ns		4 ms	
INL	Integral Non-linearity			< 0.1		LSB
DNL	Differential Non- linearity			< 0.8		LSB

2-4

Figure 2-1 Relative Variation of un-calibrated least significant bit with temperature and supply voltage, reference $3.0V/25^{\circ}C$

Temperature Measuring Unit¹

Symbol	Terminal		Internal Sch	mitt trigger	external Sch	mitt trigger ²	Unit
			PT500	PT1000	PT500	PT1000	
	Resolution RMS		17.5	17.5	16.0	16.0	Bit
	SNR		105	105	96	96	dB
	Absolute Gain ³		0.9912	0.9931	0.9960	0.9979	
		3.6 V	0.9923	0.9940	0.9962	0.9980	
	Absolute Gain vs. Vio ³	3.0 V	0.9912	0.9931	0.9960	0.9979	
		2.5 V	0.9895	0.9915	0.9956	0.9979	
	Gain-Drift vs. Vio		0,25	0.23	0.06	0.04	%/V

max. Gain Error (@ d 0 = 100 K)	0,05%	0,05%	0,02%	< 0.01%	
Gain-Drift vs. Temp	0.022	0.017	0.012	0.0082	%/10 K
Gain-Drift vs. Vio			0,08		%/V
Initial Zero Offset	< 20	<10	< 20	< 10	mК
Offset Drift vs. Temp	< 0.05	< 0.03	< 0,012	< 0.0082	mK∕ °C
PSRR			>100		dB

¹ All values measured at Vio = Vcc = 3.0 V, Cload = 100 nF for PT1000 and 200 nF for PT500 (COG-type)

² measured with external 74AHC14 Schmitt trigger

³ compared to an ideal gain of 1

2.3 Timings

At Vcc = 3.0 V ± 0.3 V, ambient temperature -40 °C to +85 °C unless otherwise specified

Oscillator

Symbol	Parameter	Min.	Typ.	Max.	Unit
Clk32	32 kHz reference oscillator		32,768		kHz
t 32st	32 kHz oscillator start-up time after power-up		250		ms
CIkHS	High-speed reference oscillator	2	4	8	MHz
toszst	Oscillator start-up time with ceramic resonator		100		μs
toszst	Oscillator start-up time with crystal oscillator		3		ms

Note:

2-6

It is strongly recommended to use a ceramic oscillator. Exactly because a quartz needs much longer to settle than a ceramic oscillator. This costs a lot current, but using a quartz oscillator has no advantage.

Serial Interface

Symbol	Parameter	Max. @ V _{io} =		Unit
		2.5 V	3.3 V	
fclk	Serial clock frequency	15	20	MHz

Symbol	Parameter	Min. @ V _{io}	Min. @ V _{io} =	
		2.5 V	3.3 V	
tpwh	Serial clock, pulse width high	30	25	ns
tpwl	Serial clock, pulse width low	30	25	ns
tsussn	SSN enable to valid latch clock	40	10	ns
$t_{\sf pwssn}$	SSN pulse width between write cycles	50	40	ns
${\sf t}_{\sf hssn}$	SSN hold time after SCLK falling	40	25	ns
tsud	Data set-up time prior to SCLK falling	5	5	ns
t hd	Data hold time before SCLK falling	5	5	ns

Symbol	Parameter	Max. @ V _{io} =		Unit
		2.5 V	3.3 V	
t _{vd}	Data valid after SCLK rising	20	16	ns

Serial Interface (SPI compatible, Clock Phase Bit =1, Clock Polarity Bit =0):

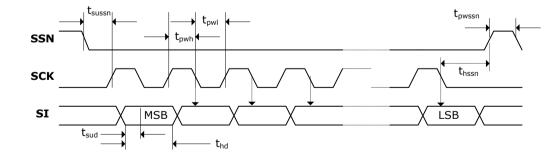


Figure 2-2 SPI Write

TDC-GP22

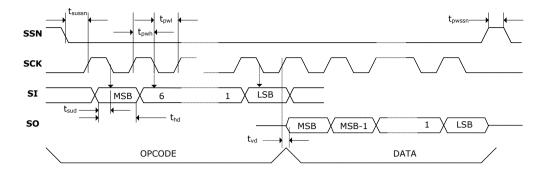


Figure 2-3 SPI Read

Disable Timings

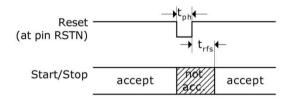


Figure 2-4 Disable Timings

Spec	Description	Measurement mode 1	Measurement mode 2
ts-en	Enable Setup Time	0 ns	0 ns
t sh-en	Enable Hold Time	1.5 ns	3.0 ns

Reset Timings

2-8

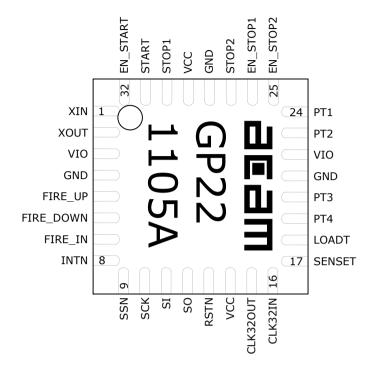


Figure 2-5 Reset Timings

Spec	Description	Typ. Min
t _{ph}	Reset pulse width	50 ns
trfs	Time after rising edge of reset pulse before further communication	200 ns
	Time after rising edge of reset pulse before analog section is ready	500 µs

2.4 Pin Description

No.	Name	Description	Buffer type	Value	lf not used
1	XIN	Oscillator driver in			GND
2	XOUT	Oscillator driver out			
3	VIO	l/O – supply voltage			
4	GND	Ground			
5	FIRE_UP	Fire pulse generator output 1	48 mA		
6	FIRE_DOW N	Fire pulse generator output 2	48 mA		
7	FIRE_IN	Diagnostics output			GND
8	INTN	Interrupt flag	4 mA	LOW active	
9	SSN	Slave select		LOW active	
10	SCK	Clock serial interface			
11	SI	Data input serial interface			

No.	Name	Name Description		Value	lf not used	
12	SO	Data output serial interface	4 mA tristate			
13	RSTN	Reset input		LOW active		
14	VCC	Core supply voltage				
15	CLK32OUT	Output 32 kHz clock generator			n. c.	
16	CLK32IN	Input 32 kHz clock generator			GND	
17	SENSET	Sense input temperature measurement	Schmitt trigger		GND	
18	LOADT	Load output temperature measurement	24 mA		n.c.	
19	PT4*	Port 4 temperature measurement	> 96 mA open drain			
20	PT3*	Port 3 temperature measurement	> 96 mA open drain			
21	GND	Ground				
22	VIO	l/O – supply voltage				
23	PT2*	Port 2 temperature measurement	> 96 mA open drain			
24	PT1*	Port 1 temperature measurement	> 96 mA open drain			
25	EN_STOP2	Enable pin stop input 2		HIGH active	VIO	
26	EN_STOP1	Enable pin stop input 1		HIGH active	VIO	
27	STOP2	Stop input 2			GND	
28	GND	Ground				
29	VCC	Core supply voltage				
30	STOP1	Stop input 1			GND	
31	START	Start input				
32	EN_START	Enable pin start input		HIGH active	VIO	

* R_{DSON} temperature ports: typ. 1.8 Ω @ 3.0 V

2.5 Package Drawings

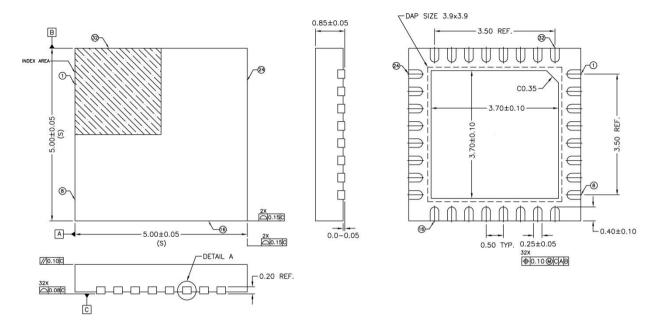
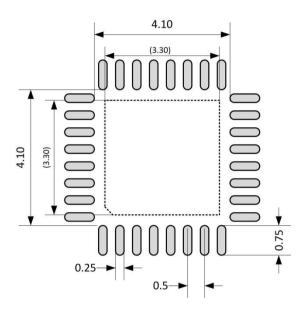



Figure 2-7 QFN-32 package outline, 5 x 5 x 0.9 mm³, 0.5 mm lead pitch

Caution: Center pad, 3.70 * 3.70 mm², is internally connected to GND. No wires other than GND are allowed underneath. It is not necessary to connect the center pad to GND.

Suitable socket: Plastronics 32QN50S15050D

Landing Pattern:

Figure 2-8

Thermal resistance: Roughly 28 K/W (value just for reference).

Environmental: The package is RoHS compliant and does not contain any Pb.

Moisture Sensitive Level (MSL)

Based on JEDEC O2O Moisture Sensitivity Level definition the TDC-GP22 is classified as MSL 1.

Soldering Temperature Profile

The temperature profile for infrared reflow furnace (in which the temperature is the resin's surface temperature) should be maintained within the range described below.

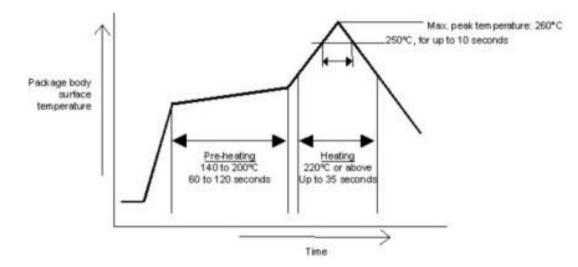


Figure 2-9 Soldering profile

TDC-GP22

Maximum temperature

The maximum temperature requirement for the resin surface, given 260°C as the peak temperature of the package body's surface, is that the resin surface temperature must not exceed 250°C for more than 10 seconds. This temperature should be kept as low as possible to reduce the load caused by thermal stress on the package, which is why soldering for short periods only is recommended. In addition to using a suitable temperature profile, we also recommend that you check carefully to confirm good soldering results.

Date Code: YYWWA: YY = Year, WW = week, A = Assembly site code

2.6 Power Supply

Supply voltage

TDC-GP22 is a high end mixed analog/digital device. To reach full performance of the chip a good power supply is mandatory. It should be high capacitive and of low inductance.

The TDC-GP22 provides two pairs of power supply terminals:

Vio - I/O supply voltage

Vcc - Core supply voltage

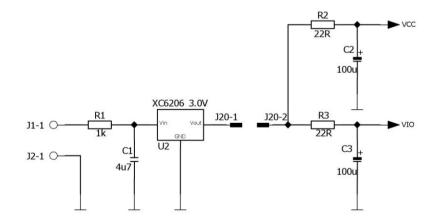


Figure 2-10

Both voltages should be applied with low series resistance from the same source. On the chip there are connected, but a separate external connection is recommended for good measurement quality. All ground pins should be connected to a ground plane on the

printed circuit board. Vio and Vcc should be provided by a battery or fixed linear voltage regulator. Do not use switched regulators to avoid disturbances caused by the I/O supply.

Vio and Vcc are connected internally on the chip. The resistance between both is in the range of several Ohms. However, Vio is connected to the pads with significantly lower impedance and therefore can provide this better than Vcc.

The measurement quality of a time-to-digital converter depends on a good power supply. The chip sees mainly pulsed current and therefore a sufficient bypassing is mandatory:

Vcc	47 to 100 µF	(minimum 22 µF)
Vio	100 µF	(minimum 22 µF)

The supply voltage should be provided through analog regulators. We strongly recommend not to use switch mode power supplies.

Current consumption

The current consumption is the sum from different parties (all data for Vio = Vcc = 3.0V):

lddq	< 5 nA typ.@3.OV, 25°C	Quiescent current, no 32 kHz oscillator running
 32	typ. 1.Ο μΑ	Standby current with active 32 kHz oscillator (GP22 waiting for command).
hs	typ. 130 µA/s	Current into the high speed oscillator at 3.0 V Vio.
	* (active runtime)	Example: In ultrasonic flow-meters the high-speed oscillator is on for
		about 2ms only.
		The average current consumption is 130 μ A/s * 2 ms = 0.26 μ A
ltmu	typ. 4 mA/s	Current into the time measuring unit, In measurement mode 1
	* (active measuring	The time measuring unit is active for the start-stop time interval plus
	time)	the calibration time interval of 2 periods of the reference clock per
		measurement.
		In measurement mode 2 the time measuring unit is on for average 4
		periods of the reference clock per measurement, two for the time
		measurement and two for calibration.
		Example: With 10 measurements per second in measurement mode
		2 and a 4 MHz reference clock the time measuring unit is active for

TDC-GP22

		only about 10 µs.
		The average current is 4 mA/s \star 10 µs = 0.040 µA.
Iτ	typ. 2.5 µAs	The current for a full temperature measurement is typ.2.5 μ As.
	* measure rate	In heat-meters the temperature is measured typically once every ${ m 30}$
		seconds. The average current is about 0.085 μA
lana	typ. 0.8 mA	Current consumption of the integrated analog part of TDC-GP22
		during a Time-of-flight (ToF) measurement. The analog part is active
		for a duration of 250 µs + ToF.
total	2.3 μΑ	In a typical ultrasonic heat meter application, the flow is measured
		twice per second. The temperature is measured every 30 seconds.
		Typical current consumption of the complete flow and temperature
		measuring unit, including the analog part, the transducers and PT
		sensors.

3 Registers & Communication

3.1 Configuration registers

The TDC-GP22 has 7 configuration registers with 32 bit. The upper 24 bit are used for configuration and are write only. They are used to setup the TDC-GP22 operating mode. The lowest 8 bit can be used e.g. as an ID and can be read back.

For communication test please write to register 1 and read back the highest 8 bit from address 5.

Note:

The write registers of TDC-GP22 are fully upwards compatible with TDC-GP21. In addition, the formerly unused bits 30, 31 in register 3 activate new functionality. Especially with bit 30 the First Wave Mode is switched on and the parameter bits DELVAL2 and DELVAL3 in registers 3 and 4 get a second meaning.

For proper work of TDC-GP22, a power-up reset via pin or SPI command is necessary after the power-up of the circuit.

3.1.1 Alphanumeric listing of configuration parameters

Parameter		Register	Bits	Default value
ANZ_FAKE		0	15	0
ANZ_FIRE	[3:0] [6:4]	0 6	28-31 8-10	2
ANZ_PER_CAL	RES	0	22,23	0
ANZ_PORT		0	17	1
CALIBRATE		0	13	1
CON_FIRE		5	28-31	0
CURR32K		1	15	0
CYCLE_TEMP		6	18,19	0
CYCLE_TOF		6	16,17	0
DA_KORR		6	25-28	0
DELREL1		3	8-13	0

Table 3-1: Configuration Parameters

TDC-GP22

Parameter	Register	Bits	Default value
DELREL2	3	14-19	0
DELREL3	3	20-25	0
DELVAL1	2	8-23	0
DELVAL2	3	8-23	0
DELVAL3	4	8-23	0
DIS_PHASESHIFT	5	27	0
DIS_PW	4	16	0
DIV_CLKHS	0	20,21	0
DIV_FIRE	0	24-27	2
DOUBLE_RES	6	12	0
EDGE_FW	4	15	0
EN_ANALOG	6	31	0
EN_AUTOCALC_MB2	3	31	0
EN_ERR_VAL	3	29	0
EN_FAST_INIT	1	23	0
EN_FIRST_WAVE	3	30	0
EN_INT [2:0] [3]	2 6	29-31 21	1
EN_STARTNOISE	5	28	0
FIREO_DEF	6	14	0
HIT1	1	24-27	5
HIT2	1	28-31	5
HITIN1	1	16-18	0
HITIN2	1	19-21	0
HZ6O	6	15	0
IDO	0	0-7	0
ID1	1	0-7	0
ID2	2	0-7	0
ID3	3	0-7	0
ID4	4	0-7	0
ID5	5	0-7	0

3-2

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de