imall

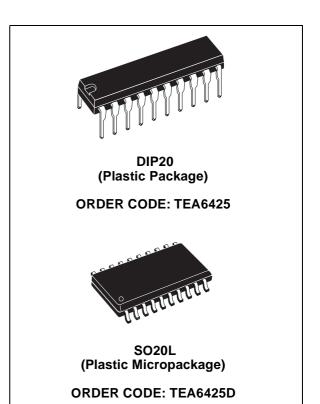
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

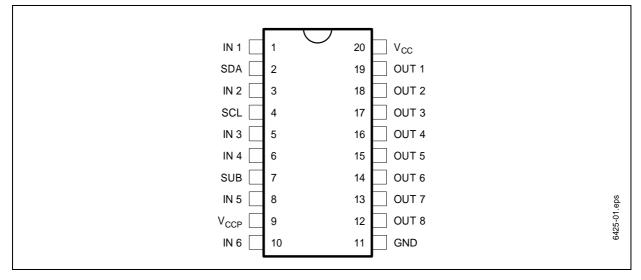
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



VIDEO CELLULAR MATRIX


- 6 Video Inputs 8 Video Outputs
- 2 Internal Selectable YC Adders
- 15MHz Bandwidth @ -3dB
- Selectable 0.5/6.5dB Gain FOR EACH Output
- High Impedance Switch for each Output (3state operation)
- Programmable Clamp Mode on each Input (sync bottom or average value)
- -60dB Crosstalk @ 5MHz
- 4 Sub-address Capability
- I²C Bus Control

DESCRIPTION

This device is intended for switching between video and chroma signals such as CVBS, SVHS, baseband CVBS, MAC. Each input clamp mode, each output gain, all switching are controlled through the I^2C bus. The 8 outputs can be set separately in high impedance state, to enable parallel DC connection of several devices (up to 4).

Figure 2. Block Diagram

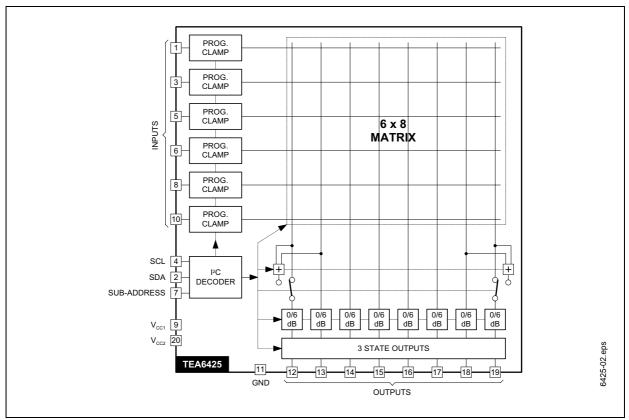
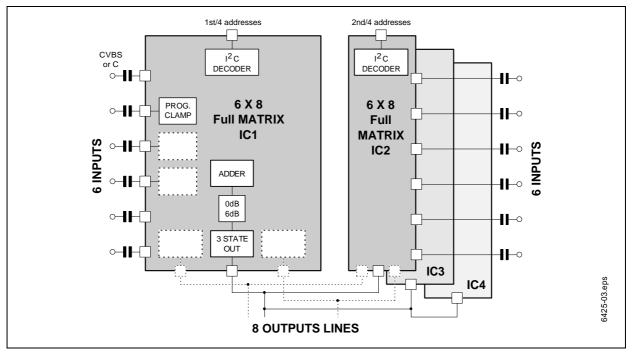



Figure 3. Cellular Matrix Connections

2/10

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	12	V
VI	Voltage at Pin i to GND	0, V _{CC}	V
T _{oper}	Operating Ambient Temperature	0, + 70	°C
T _{stg}	Storage Temperature	-20, + 150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit	
R _{th} (j-a)	Junction-ambient Thermal Resistance	Min.	80	°C/W

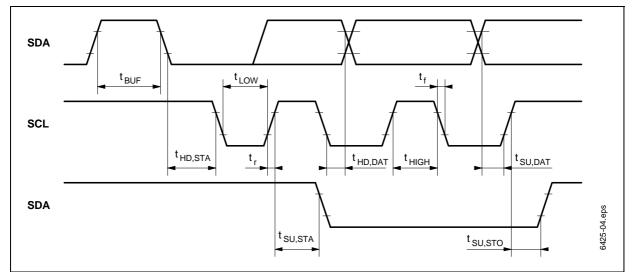
ELECTRICAL CHARACTERISTICS ($V_{CC} = 8V$, $T_{amb} = 25^{oC}$, $V_{IN} = 1V$, Gain = 6.5dB, $C_{load} = 20pF$, $R_{load} = 4.7k\Omega$; Gain condition, clamp and 3-state are controlled by I^{2C} bus, unless otherwise specified)

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
SUPPLY			•	•		
V _{CC}	Supply Voltage		7.2	8	8.8	V
I _{CC}	Supply Current			45	60	mA
RR	Supply Voltage Rejection	f = 1kHz	40	46		dB
VIDEO INP	UTS (clamping at bottom sync level)	•	•		
V _{IN}	Max. Signal Amplitude	Clamp Active	2			V _{PP}
V _{clamp}	Clamp Level	Clamp Active	1.7	2	2.3	V
V _{DC}	Input DC Level	Clamp Inactive	2.7	3	3.3	V
I _{IN}	Leakage Current	1 input connected to 1 output		2	5	μA
I _{clamp}	Clamp Current	V _{clamp} - 200mV		0.9	3	mA
VIDEO OU	TPUTS	• •	•	•		
R _{OUT}	Output Resistance			15	50	W
Z _{HI}	Output "off" Impedance	no load	50			kΩ
C _{HI}	C _{OUT} in 3-state	no load		3		pF
G1	Voltage Gain	f = 100kHz	0	0.5	1	dB
G2	Voltage Gain	f = 100kHz	6	6.5	7	dB
V _{sync}	Top Level Sync (Y or CVBS)	G = 6.5dB, Clamp Active	1	1.25	2	V
	Output Mean Level (chroma)	G = 0.5dB, Clamp Inactive	2	2.4	3	V
V _{bias}	Output Mean Lever (Chroma)	G = 6.5dB, Clamp Inactive	3	3.4	4	V
	Isolation "off" State	f = 5MHz	60			dB
	Crosstalk Attenuation between Channels	f = 5MHz	50	60		dB
В	Bandwidth	$C_{load} = 20pF, G = 6.5dB$ at ± 0.5dB at ± 1dB at - 3dB		5 10 21		MHz

FUNCTIONAL DESCRIPTION

This device is controlled via the I^2C bus. 4 addresses can be selected by a 4-level detector on Pin 7, thus enabling parallel connection of 4 devices.

Via the I²C bus :


- The input signals can be clamped at their negative peak (top sync).
- The gain factor of the outputs can be selected between 0.5 and 6.5dB.
- Each of the 6 inputs can be connected to the 8 outputs.
- Each output can individually be set in a high impedance state.

Two internal SVHS mixers will add the selected Y and C inputs. Two dedicated outputs will have the option to select this added signal also.

I²C BUS CHARACTERISTICS

Cumbal	Desemptor	Test Conditions	Stan	dard Mode	Fa	Unit	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
SCL							
V _{IL}	Low Level Input Voltage		- 0.3	+ 1.5	- 0.3	+ 1.5	V
V _{IH}	High Level Input Voltage		3.0	V _{CC} + 0.5	3.0	V _{CC} + 0.5	V
Ι _{LI}	Input Leakage Current	$V_{I} = 0$ to V_{DD}	- 10	+ 10	- 10	+ 10	μA
f _{SCL}	Clock Frequency		0	100	0	400	kHz
t _R	Input Rise Time	1.5V to 3V		1000		300	ns
t _F	Input Fall Time	1.5V to 3V		300		300	ns
CI	Input Capacitance			10		10	pF
SDA	•	•	-		•		
V _{IL}	Low Level Input Voltage		- 0.3	+ 1.5	- 0.3	+ 1.5	V
V _{IH}	High Level Input Voltage		3.0	V _{CC} + 0.5	3.0	V _{CC} + 0.5	V
Ι _{LI}	Input Leakage Current	$V_{I} = 0$ to V_{DD}	- 10	+ 10	- 10	+ 10	μA
CI	Input Capacitance			10		10	pF
t _R	Input Rise Time	1.5V to 3V		1000		300	ns
t _F	Input Fall Time	1.5V to 3V		300		300	ns
V _{OL}	Low Level Output Voltage	I _{OL} = 3mA		0.4		0.4	V
t _F	Output Fall Time	3V to 1.5V		250		250	ns
CL	Load Capacitance			400		400	pF
TIMING							
t _{LOW}	Clock Low Period		4.7		1.3		μs
t _{HIGH}	Clock High Period		4.0		0.6		μs
t _{SU} , DAT	Data Set-up Time		250		100		ns
t _{HD} , DAT	Data Hold Time		0	340	0	340	ns
	Set-up Time from Clock High to Stop		4.0		0.6		μs
t _{BUF}	Start Set-up Time following a Stop		4.7		1.3		μs
t _{HD} , STA	Start Hold Time		4.0		0.6		μs
t _{SU} , STA	Start Set-up Time following Clock Low-to High Transition		4.7		0.6		μs

Figure 4. I²C Bus Timing

I²C BUS SELECTION

I²C Bus Slave Address

Address	A6	A5	A4	A3	A2	A1	A0	R/W
Value	1	0	0	1	0	A 1	A0	0

|²C Sub-Address

Symbol	Parameter	Cond	litions	Pin 7 Voltage (Typ)	Unit
Vsub	Slave address HEXA		ddress note)		
		A1	A0		
1	90	0	0	GND	V
2	96	1	1	V _{CC}	V
3	94	1	0	1/3	V _{CC}
4	92	0	1	2/3	V _{CC}

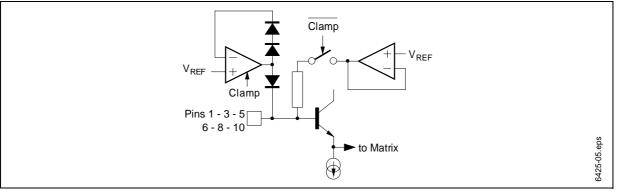
Note: The first 3 levels are defined by connecting the sub-address pin to the appropriate level. Sub-address 4 will be selected when this pin is left open.

1st Data Byte

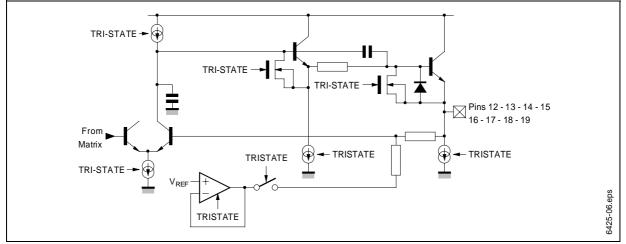
	b7	b6	b5	b4	b3	b2	b1	b0	Selected
	a2	a1	a0	*	*	*	*	1	Output
	0	0	0	*	*	*	*	0	OUT1
	0	0	1	*	*	*	*	0	OUT2
	0	1	0	*	*	*	*	0	OUT3
Output	0	1	1	*	*	*	*	0	OUT4
Select	1	0	0	*	*	*	*	0	OUT5
	1	0	1	*	*	*	*	0	OUT6
	1	1	0	*	*	*	*	0	OUT7
	1	1	1	*	*	*	*	0	OUT8

2nd Data Byte

	b7	b6	b5	b4	b3	b2	b1	b0	Selected
İ	a2	a1	a0	*	*	*	*	I	Output
	0	0	0	*	*	*	*	1	IN1
	0	0	1	*	*	*	*	1	IN2
Input	0	1	0	*	*	*	*	1	IN3
Select	0	1	1	*	*	*	*	1	IN4
	1	0	0	*	*	*	*	1	IN5
	1	0	1	*	*	*	*	1	IN6
Claura	*	*	*	0	*	*	*	1	Free
Clamp	*	*	*	1	*	*	*	1	Clamped
Qain	*	*	*	*	0	*	*	1	0.5dB
Gain	*	*	*	*	1	*	*	1	6.5dB
Misson	*	*	*	*	*	0	*	1	Disabled
Mixer	*	*	*	*	*	1	*	1	Enabled
Tri atata	*	*	*	*	*	*	0	1	Low impedance
Tri-state	*	*	*	*	*	*	1	1	Tri-state


Power-on-Reset

When active: outputs in 3-state, inputs are clamped


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Start of Reset	Incr. V _{CC}			2.5	V
Reset		Decr. V _{CC}			4.2	V
	End of Reset	Incr. V _{CC}	4.5		7.2	V

PIN CONFIGURATIONS

Figure 5. Video IN

Figure 6. Video OUT

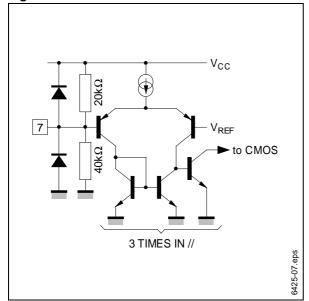
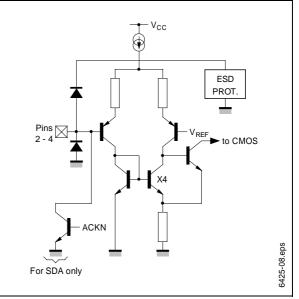
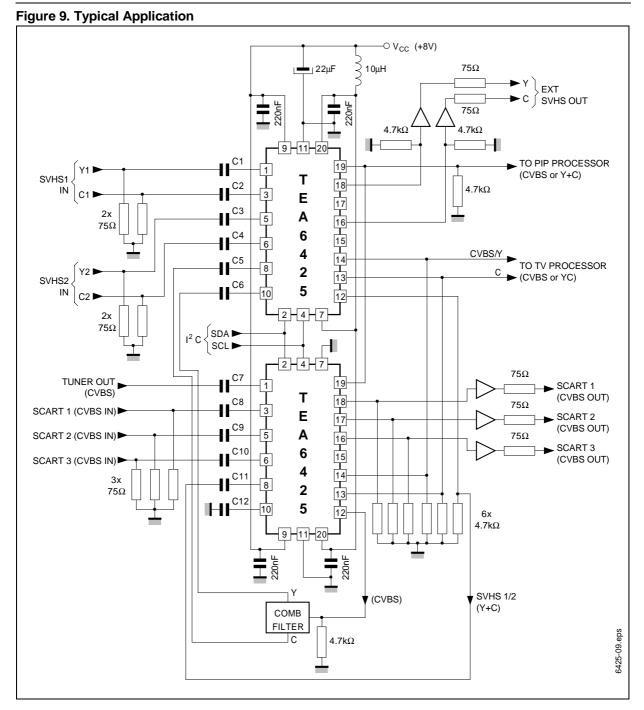
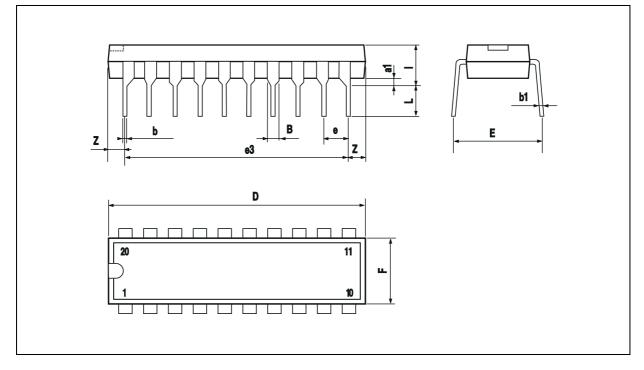




Figure 8. Bus Inputs



PACKAGE MECHANICAL DATA

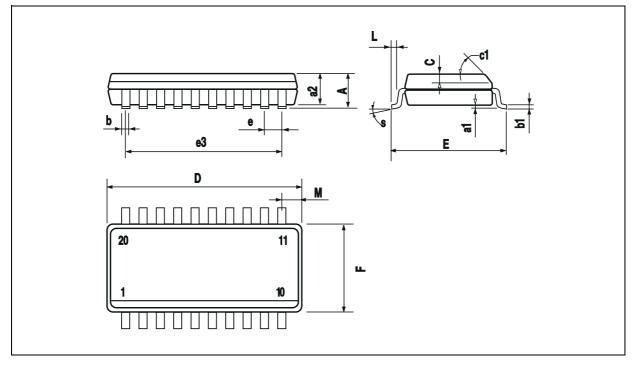

20 PINS - PLASTIC DIP

Figure 10. 20-Pin Package

PACKAGE MECHANICAL DATA (Cont'd) 20 PINS - PLASTIC MICROPACKAGE

Figure 11. 20-Pin Package

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

©2003 STMicroelectronics - All Rights Reserved.

Purchase of I²C Components by STMicroelectronics conveys a license under the Philips I²C Patent. Rights to use these components in an I²C system is granted provided that the system conforms to the I²C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

لرکا