imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Preliminary data sheet

1. General description

The TFA9815 is a 2-channel power comparator for high-efficiency class D audio amplifier systems. It contains two full-bridge Bridge-Tied Load (BTL) power stages, drive logic, protection control logic and full differential input comparators. By using this power comparator a compact closed-loop self-oscillating digital audio amplifier system or open-loop system can be built. The continuous output power is 2×17 W in a full-bridge BTL application. The TFA9815 does not require a heat sink and operates using an asymmetrical supply voltage.

2. Features

- Stereo full-bridge audio amplifier for class D applications
- No external heat sink required
- Operating voltage range: asymmetrical from 8 V to 20 V
- Thermally protected
- Zero dead-time switching
- Current-limiting (no audible interruptions)

3. Applications

- Self-oscillating or open-loop class D audio amplifier applications
- Flat-panel television sets
- Flat-panel monitors
- Multimedia systems
- Wireless speakers
- High-end CRT television sets

4. Quick reference data

Table 1. Quick reference data

 $V_P = 12 V$; $f_{osc} = 550 \text{ kHz}$; $T_{amb} = 25 \degree C$; typical application diagram <u>Figure 12</u>, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
General						
V _P	supply voltage	single, asymmetrical supply (V _{DD} - V _{SS})	8	12	20	V
I _P	supply current	Sleep mode	-	110	200	μA

Table 1. Quick reference data ...continued

 $V_P = 12 V$; $f_{osc} = 550 \text{ kHz}$; $T_{amb} = 25 \circ C$; typical application diagram <u>Figure 12</u>, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{q(tot)}	total quiescent current	Operating mode; no load; no snubbers; no filter connected	-	40	50	mA
η_{po}	output power efficiency	output power; 2×10 W into 8 Ω	89	91	-	%
$P_{o(RMS)}$	RMS output power	$\label{eq:VP} \begin{array}{l} V_P = 15 \; V; \; R_L = 8 \; \Omega; \\ THD = 10 \; \% \end{array}$	15	16	-	W
		$\label{eq:VP} \begin{array}{l} V_P = 12 \; V; \; R_L = 8 \; \Omega; \\ THD = 10 \; \% \end{array}$	9	10	-	W
		$\label{eq:VP} \begin{array}{l} V_P = 12 \; V; \; R_L = 6 \; \Omega; \\ THD = 10 \; \% \end{array}$	12	13	-	W
		$\label{eq:VP} \begin{array}{l} V_P = 12 \; V; \; R_L = 4 \; \Omega; \\ THD = 10 \; \% \end{array}$	17	18	-	W

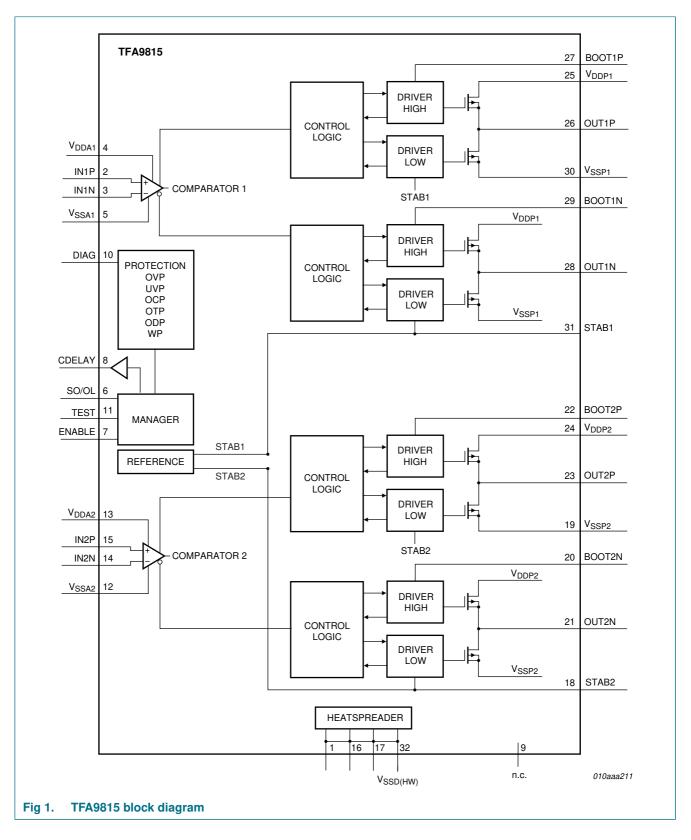
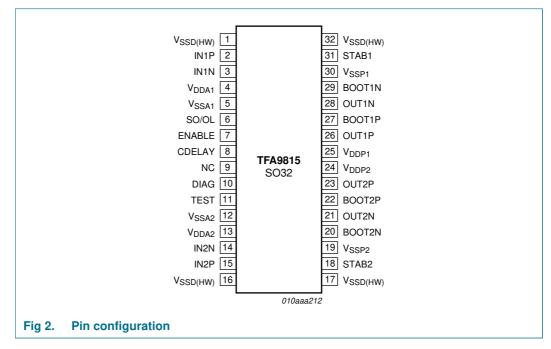

5. Ordering information

Table 2. Ordering information

Type number	Package		
	Name	Description	Version
TFA9815T	SO32	plastic small outline package; 32 leads; body width 7.5 mm	SOT287-1


TFA9815

6. Block diagram

7. Pinning information

7.1 Pinning

The SO32 package has four corner leads. These leads (1, 16, 17 and 32) are internally connected to the die pad and must be connected to V_{SSA} . Together with the applied copper area on the PCB these leads determine the ambient temperature, which affects the thermal resistance of the junction.

7.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
V _{SSD(HW)}	1	negative digital supply voltage and handle-wafer connection
IN1P	2	positive input comparator channel 1
IN1N	3	negative input comparator channel 1
V _{DDA1}	4	positive analog supply voltage channel 1
V _{SSA1}	5	negative analog supply voltage channel 1
SO/OL	6	self-oscillating / open-loop configuration enable
ENABLE	7	enable input to switch between Sleep and Operating mode
CDELAY	8	switch on/off timing control
n.c.	9	not connected
DIAG	10	diagnostic output; open-drain
TEST	11	test signal input; for testing purposes only
V _{SSA2}	12	negative analog supply voltage channel 2
V _{DDA2}	13	positive analog supply voltage channel 2
IN2N	14	negative input comparator channel 2

Table 3.	Pin description	continued
Symbol	Pin	Description
IN2P	15	positive input comparator channel 2
V _{SSD(HW)}	16	negative digital supply voltage and handle-wafer connection
$V_{\text{SSD}(\text{HW})}$	17	negative digital supply voltage and handle-wafer connection
STAB2	18	decoupling of internal 11 V regulator for channel 2 drivers
V _{SSP2}	19	negative power supply voltage channel 2
BOOT2N	20	bootstrap high-side driver negative output channel 2
OUT2N	21	negative output channel 2
BOOT2P	22	bootstrap high-side driver positive output channel 2
OUT2P	23	positive output channel 2
V _{DDP2}	24	positive power supply voltage channel 2
V _{DDP1}	25	positive power supply voltage channel 1
OUT1P	26	positive output channel 1
BOOT1P	27	bootstrap high-side driver positive output channel 1
OUT1N	28	negative output channel 1
BOOT1N	29	bootstrap high-side driver negative output channel 1
V _{SSP1}	30	negative power supply voltage channel 1
STAB1	31	decoupling of internal 11 V regulator for channel 1 drivers
$V_{\text{SSD}(\text{HW})}$	32	negative digital supply voltage and handle-wafer connection

8. Functional description

8.1 General

The TFA9815 is a dual-switching power comparator. It is the main building block for a stereo high-efficiency Class D audio power amplifier system. It contains two full-bridge BTL power stages, drive logic, protection control logic and full differential input comparators and references (see Figure 1). By using this power comparator a compact closed-loop self-oscillating digital amplifier system or open-loop system can be built. A second-order low-pass filter converts the PWM output signal into an analog audio signal across the speaker.

8.2 Interfacing

The pins ENABLE and SO/OL control the Operating mode of the TFA9815. Both the ENABLE and the SO/OL pins are referenced to $V_{SSD(HW)}$.

When the SO/OL pin is connected to $V_{SSD(HW)}$ the TFA9815 is in self-oscillating configuration: when the SO/OL pin is floating the TFA9815 is in open-loop configuration. Under this latter condition the open-pin voltage is typically 4 V applied internally. The TEST pin needs to be connected to ground in both situations.

TFA9815_1 Preliminary data sheet

Table 4.SO/	OL connections	
Interfacing		
SO/OL connec	cted to: Configuration	
V _{SSD(HW)}	Self-oscillating	
Open	Open-loop	

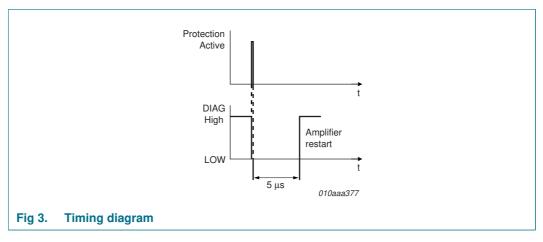
The device has two modes: Sleep and Operating.

In Sleep mode the TFA9815 is not biased and has a very low supply current. Sleep mode can also be used to quickly mute the device.

When the TFA9815 is set into Operating mode the device is started via the start-up sequence, which provides a pop-free start-up behavior. After start-up the STABn reference voltages are present and the outputs start switching.

Table 5. Start-up	
Interfacing	
ENABLE (V)	Mode
ENABLE < 0.8 V	Sleep mode
ENABLE > 3 V	Operating mode

8.3 Input comparators


The input stages have a differential input and are optimized for low noise and offset. This results in maximum flexibility in the application.

Operating in self-oscillating configuration the inputs (IN1P, IN1N, IN2P, IN2N) of the comparators are internally set to a voltage level of V₂, but only during the start-up sequence. In Operating mode the inputs are high-ohmic.

Operating in open-loop configuration, no internal voltages are applied to the inputs. The input pins (IN1P, IN1N, IN2P, IN2N) are pulled down to V_{SSA1} and V_{SSA2} level by internal resistors.

8.4 Diagnostic

The DIAG output is an open-drain output. The maximum current is 2 mA. When one of the protections is activated the DIAG output is set LOW. The DIAG output refers to V_{SSD} .

8.5 Protections

The TFA9815 has the following protections:

- OverTemperature Protection (OTP)
- OverCurrent Protection (OCP)
- OverVoltage Protection (OVP)
- UnderVoltage Protection (UVP)
- OverDissipation Protection (ODP)
- Window Protection (WP)

When either the OTP or the OCP are activated the output power stage is switched off and all the outputs (OUT1N, OUT1P, OUT2N and OUT2P) become floating. The power stage will switch back on after 5 μ s or as soon as the fault condition is removed.

When any other protection is activated (OVP, UVP, ODP, or WP) all the outputs become floating and the device shuts down. The TFA9815 will resume operating after the fault condition has been removed, going through the restart sequence shown in Figure 3. Restarting will typically take 500 ms, depending on the power-supply voltage level.

Overtemperature protection

If the junction temperature (T_j) exceeds a threshold level of about 150 °C the outputs become floating. The device will start switching again after 5 ms and when the temperature is below 150 °C. This thermal limitation is without audible interruptions.

Overcurrent protection

If the output current exceeds the maximum output-current threshold level the outputs become floating. The device will start switching again after 5 μ s. This current limitation is without audible interruptions.

Overvoltage protection

If the supply voltage applied to the TFA9815 exceeds the maximum supply-voltage threshold level the device shuts down. The device will resume operating when the supply is within the operating range, going through the restart sequence.

Undervoltage protection

If the supply voltage applied to the TFA9815 falls below the minimum supply-voltage threshold level the device shuts down. The device will resume operating when the supply is within the operating range, going through the restart sequence.

Overdissipation protection

If the junction temperature (T_j) exceeds 135 °C an internal OverTemperature Warning (OTW) signal is generated. If the overcurrent protection is generated while the OTW is active the device will shut down and resume operating automatically, going through the restart sequence.

Window protection

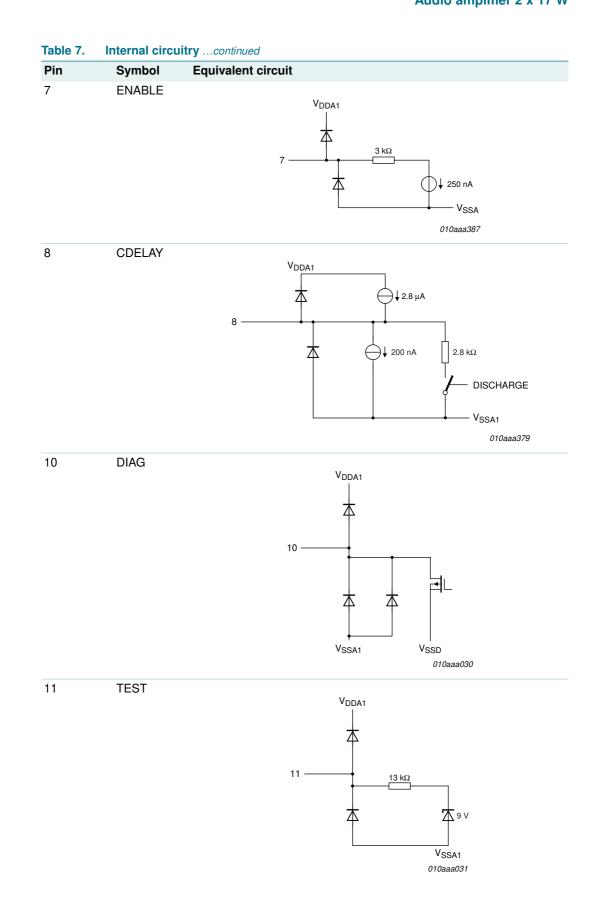
During start-up, if one of the outputs is shorted to V_{SS} or V_{DD} the device will interrupt the start-up sequence and wait until the short is removed. This is an effective measure to protect the device against shorts between the outputs (before the filter) and the ground or supply lines. The WP protects the device against errors made during board assembly.

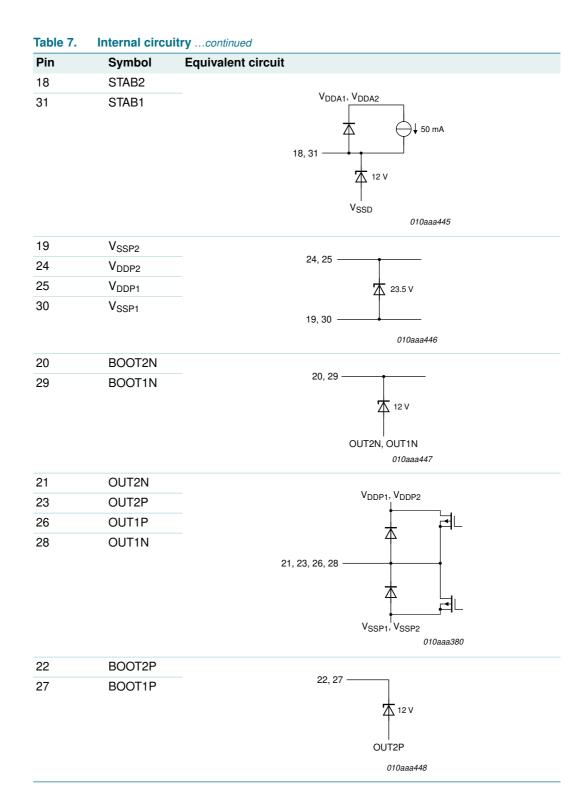
Protection	S			
Symbol	Condition	Diag.	Outputs	Recovering
OTP	T _j > 150 °C	LOW	Floating	Automatic, after 5 μs and T_j < 150 $^\circ C$
OCP	I _O > I _{ORM}	LOW	Floating	Automatic, after 5 µs
OVP	V _P > 20 V	LOW	Floating	Switch-off to restart when $V_P < 20 V$
UVP	V _P < 8 V	LOW	Floating	Switch-off to restart when $V_P > 8 V$
ODP	$T_j > 135 \text{ °C}$ and $I_O > I_{ORM}$	LOW	Floating	Switch-off to restart
WP	$OUTX > V_{DDA} - 1 V \text{ or } OUTX < V_{SSA} + 1 V$	LOW		Start-up after removing fault condition

Table 6. Overview protections

VP						
STAB1 CDELAY V IN x	FLOATING	PWM	FLOATING	PWM		
		AUDIO		AUDIO		
DIAG						
- -ig 4. Start-ι	SLEEP START-U	JP OPERATING	FAULT RESTART	OPERATING	SHUT-DOWN	SLEEP 010aaa378

8.6 Timing diagram


9. Internal circuitry


Pin	Symbol	Equivalent circuit
1	V _{SSD(HW)}	
16	V _{SSD(HW)}	1,16, 17, 32 VDDA
17	V _{SSD(HW)}	本 文 ション マート・ション マート・シー
32	V _{SSD(HW)}	22 V VSSA 010aaa384
2	IN1P	010282304
3	IN1N	2, 14 VDDA1, VDDA2
14	IN2N	
15	IN2P	hvp V_{SSA} $I_{135 k\Omega}$ $\Sigma_{5.5 V}$
		3, 15
		010aaa385
4	V _{DDA1}	
5	V _{SSA1}	4, 12
12	V_{SSA2}	<u>⊅</u> 22 V
13	V _{DDA2}	5, 13 <i>010aaa386</i>
6	SO/OL	
		$ \begin{array}{c} V_{\text{DDA1}} & V_{\text{DDA1}} \\ \hline $

010aaa381

NXP Semiconductors

TFA9815 Audio amplifier 2 x 17 W

10. Limiting values

Table 8. In accorda	Limiting values nce with the Absolute Maxin	num Rating System	(IEC 60	134).		
Symbol	Parameter	Conditions		Min	Мах	Unit
VP	supply voltage	Asymmetrical		-0.3	+23.1	V
I _{ORM}	repetitive peak output current	-		3	-	А
Tj	junction temperature	-		-	180	°C
T _{stg}	storage temperature	-		-55	+150	°C
T _{amb}	ambient temperature	-		-40	+85	°C
P _{max}	maximum power dissipation	-		-	5	W
V _x	voltage on pin x	DIAG		$V_{\rm SS}-0.3$	12	V
		IN1P - IN1N		-6	+6	V
		IN2P - IN2N		-6	+6	V
		all other pins		$V_{\rm SS}-0.3$	$V_{DD} + 0.3$	V
V _{esd}	electrostatic discharge	HBM	<u>[1]</u>	-2000	+2000	V
	voltage	MM	[2]	-200	+200	V

[1] Human-body model (HBM): $R_S = 1500 \Omega$; C = 100 pF; for pins 2, 3, 14, and 15: $V_{esd} = \pm 1500 V$.

[2] Machine model (MM): $R_S = 0 \Omega$; C = 200 pF; $L = 0.75 \mu H$.

11. Thermal characteristics

Table 9.	Characteristics						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	JEDEC test board	<u>[1]</u>	<u>l</u> -	39	42	K/W
		Two-layer application board	[2]] -	42	-	K/W
$\Psi_{j\text{-lead}}$	thermal characterization parameter from junction to lead	-		-	-	30	K/W
$\Psi_{j\text{-top}}$	thermal characterization parameter from junction to top of package	-	<u>[3]</u>	-	-	8	K/W

[1] Measured in a JEDEC high K-factor test board (standard EIA/JESD 51-7) in free air with natural convection.

[2] Two-layer application board (70 mm x 57 mm), 35 μ m copper, FR4 base material in free air with natural convection.

[3] Strongly depends on where the measurement is taken on the package.

12. Characteristics

12.1 Static characteristics

Table 10. Characteristics

 V_{P} = 12 V; T_{amb} = 25 °C; f_{osc} = 550 kHz; typical application diagram <u>Figure 12</u>, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Supply vol	tage						
V _P	supply voltage	single asymmetrical supply $(V_{DD} - V_{SS})$		8	12	20	V
l _P	supply current	Sleep mode		-	110	200	μA
I _{q(tot)}	total quiescent current	Operating mode; no load, no snubbers and no filter connected		-	40	50	mA
Series res	stance output power switches						
R_{DSon}	drain-source on-state resistance	$T_j = 25 \ ^{\circ}C$		-	150	220	mΩ
Enable inp	ut: pin ENABLE ^[1]						
VIL	LOW-level input voltage	Sleep mode		-	-	0.8	V
V _{IH}	HIGH-level input voltage	Operating mode		3	-	V_{P}	V
l _l	input current	$V_I = 5 V$		-	1	20	μA
SO/OL inp	ut: pin SO/OL ^[1]						
V _{IL}	LOW-level input voltage	self-oscillating configuration		0	-	0.4	V
V _{IH}	HIGH-level input voltage	open-loop configuration		3	4	5	V
Stabilizer (output pins STAB1 and STAB2						
Vo	output voltage	Operating mode	<u>[1]</u>	10.2	11	11.7	V
Comparate	or full-differential input stage						
V _{offset(i)(eq)}	equivalent input offset voltage	-		-	-	1	mV
V _{n(i)(eq)}	equivalent input noise voltage	20 Hz < f < 20 kHz		-	-	15	μV
V _{i(cm)}	common-mode input voltage	-		V _{SSA} + 3	-	V _{DDA} – 1	V
I _{IB}	input bias current	-		-	-	1	μA
Overtempo	erature protection						
$T_{act(th_prot)}$	thermal protection activation temperature	-		150	-	180	°C
Overvoltag	ge protection						
V _{th(ovp)}	overvoltage protection threshold voltage	level internal fixed		20.1	21.5	23	V
Undervolta	age protection						
V _{P(uvp)}	undervoltage protection supply voltage	level internal fixed		7	7.5	7.9	V
Overcurre	nt protection						
I _{O(ocp)}	overcurrent protection output current	-	[2]	3	3.5	-	A

Table 10. Characteristics ... continued

V_P= 12 *V*;*T_{amb}* = 25 °*C*; *f_{osc}* = 550 kHz; typical application diagram Figure 12, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Window I	Protection (WP)					
Vo	output voltage	HIGH-level	-	$V_{DDA} - 1$	-	V
		LOW-level	-	$V_{SSA} + 1$	-	V

[1] Measured with respect to V_{SSD} .

[2] Current limiting concept: in overcurrent condition no interruption of the audio signal in case of impedance drop.

12.2 Dynamic characteristics

Table 11. Switching characteristics

 V_{P} = 12 V; T_{amb} = 25 °C; f_{osc} = 550 kHz unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Timing PWM output: pins OUT1 and OUT2						
t _r	rise time	$I_{O} = 0 A$	-	10	-	ns
t _f	fall time	$I_{O} = 0 A$	-	10	-	ns
t _{w(min)}	minimum pulse width	$I_{O} = 0 A$	-	60	-	ns

12.3 AC characteristics measured in typical application

Table 12. AC characteristics measured in typical application

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
P _{o(RMS)}	RMS output power	V_{P} = 15 V; R_{L} = 8 $\Omega;$ THD = 10 %		15	16	-	W
		V_{P} = 12 V; R_{L} = 8 $\Omega;$ THD = 10 %		9	10	-	W
		V_{P} = 12 V; R_{L} = 6 $\Omega;$ THD = 10 %		12	13	-	W
		V_{P} = 12 V; R_{L} = 4 $\Omega;$ THD = 10 $\%$		17	18	-	W
THD+N	total harmonic distortion-plus-noise	$P_o = 1 W; f_i = 1 \text{ kHz}$	<u>[1]</u>	-	0.05	0.1	%
η_{po}	output power efficiency	$P_o = 2 \times 10 \text{ W}$ at 8 Ω		89	91	-	%
		$P_o = 2 \times 18 \text{ W}$ at 4 Ω		88	90	-	%
G _{v(cl)}	closed-loop voltage gain	$V_i = 100 \text{ mV} (\text{RMS}); f_i = 1 \text{ kHz}$		18.6	19.3	21	dB
V _{n(o)}	output noise voltage	inputs shorted; AES17 brick-wall		-	150	-	μV
S/N	signal-to-noise ratio	$V_o = 10 \text{ V} (\text{RMS}); G_{v(cl)} = 20 \text{ dB}$		94	96	-	dB
SVRR	supply voltage ripple rejection	Operating mode; f _i = 1 kHz	[2]	34	45	-	dB
α_{cs}	channel separation	$P_o = 1 W; f_i = 1 kHz$		55	70	-	dB

[1] THD+N is measured in a bandwidth of 20 Hz to 20 kHz, AES17, brick-wall.

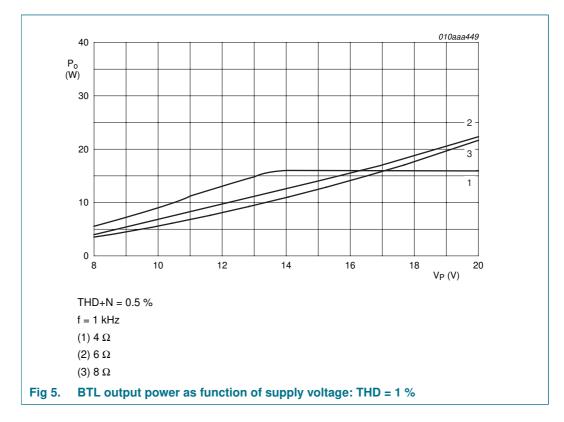
[2] Minimum value determined by R5, R10, R17, R22 equalling +1 % and R7, R14, R18, R20 equalling -1 %.

13. Application information

13.1 Output power estimation

For BTL configuration the output power can be estimated using Equation 1:

$$P_{o1\%} = \frac{\left[\left[\frac{R_L}{R_L + 2 \times (R_{DSon} + R_S)}\right] \times V_P\right]^2}{2 \times R_L} \tag{1}$$


Where,

- V_P = supply voltage [V]
- $R_L = load impedance [\Omega]$
- R_{DSon} = on resistance power switch [Ω]
- R_S = series resistance output inductor [Ω]

The output power at 10% THD can be estimated by using Equation 2

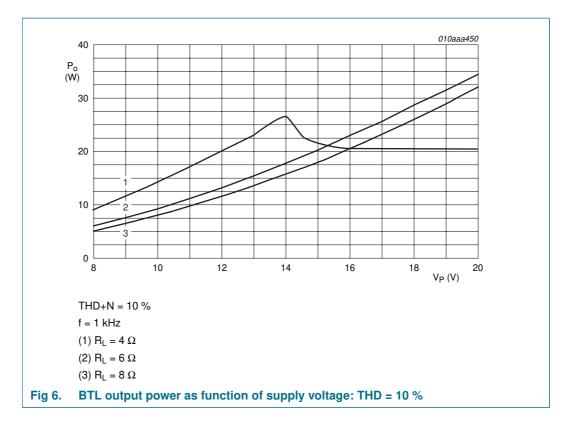

 $P_{o10\%} = 1.25 \times P_{o0.5\%}$

Figure 5 and Figure 6 below show the estimated output power at THD = 0.5 % and THD = 10 % as a function of the BLT supply voltage for different load impedances.

TFA9815_1 Preliminary data sheet (2)

TFA9815 Audio amplifier 2 x 17 W

13.2 Output current limiting

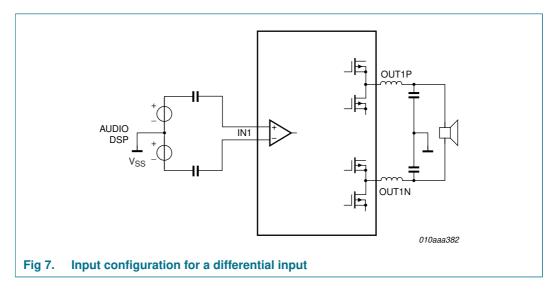
The maximum peak output current is limited by the level of the overcurrent protection threshold. During normal operation the output current should not exceed this threshold level of 3 A otherwise the OCP will be triggered and the device will stop switching for 5 μ s. The peak output current in BTL can be estimated using the following equation:

$$I_Omax \le \frac{V_P}{R_L + 2 \times (R_{DSon} + R_S)} \le 3A$$

Where:

- V_P = supply voltage [V]
- $R_L = load impedance [\Omega]$
- R_{DSon} = on resistance power switch [Ω]
- R_S = series resistance output inductor [Ω]

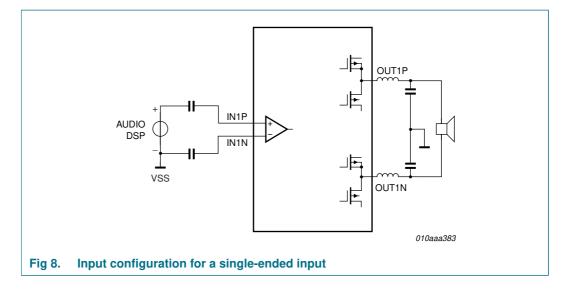
13.3 Speaker configuration and impedance

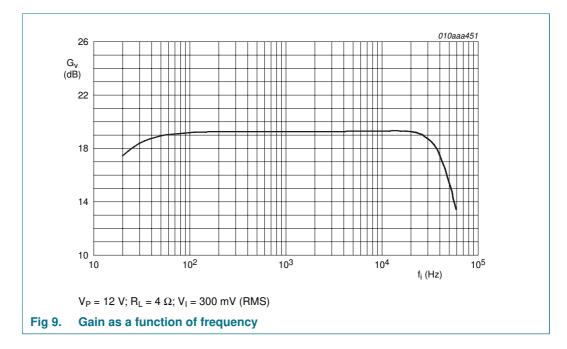

For a flat-frequency response (second-order Butterworth filter) it is necessary to change the low-pass filter components LLC and CLC according to the speaker configuration and impedance. Table 13 shows the practical required values:

Configuration	Impedance (Ω)	LLC (μΗ)	CLC (nF)
BTL	4	10	1500
	6	15	1000
	8	22	680

13.4 Differential input

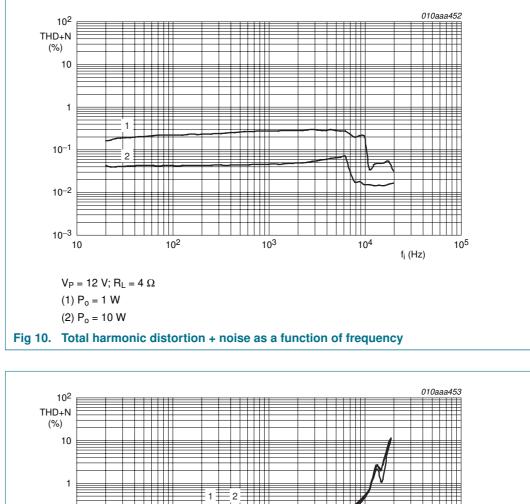
For a high common-mode rejection ratio and a maximum of flexibility in the application, the audio inputs of the application are fully differential.

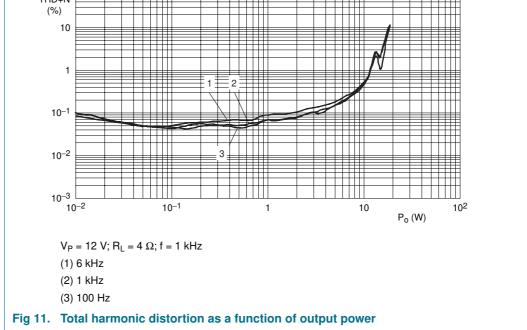

The input configuration for a differential-input application is illustrated in Figure 7.


13.5 Single-ended input

When using an audio source with a single-ended 'out', it is important to connect the IN1N from the application board to the V_{SS} of the audio source (e.g. Audio Digital Signal Processing (Audio DSP)).

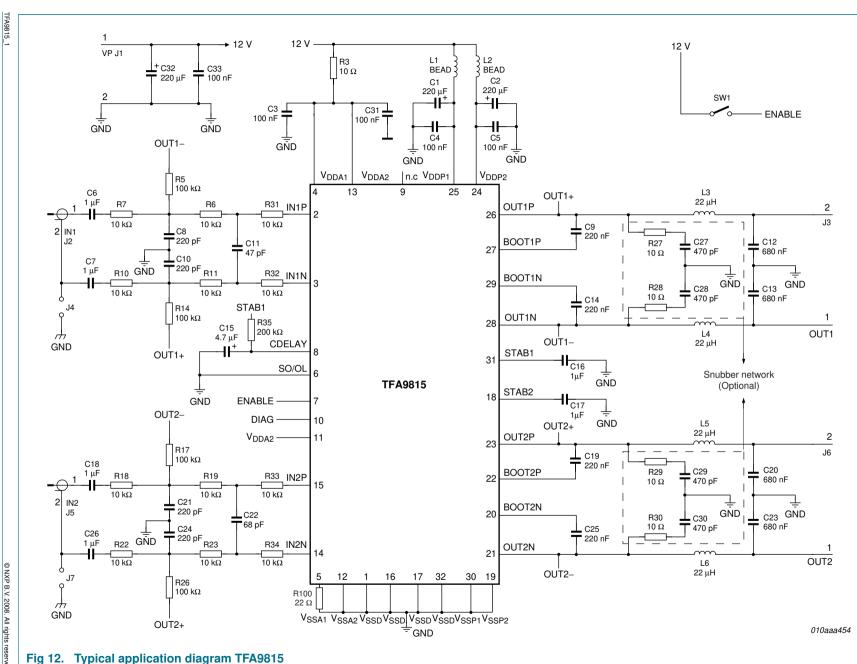
The input configuration for a single-ended 'in' application is illustrated in Figure 8.




13.6 Curves measured in a typical application

TFA9815

Audio amplifier 2 x 17 W



13.7 Typical application diagram TFA9815

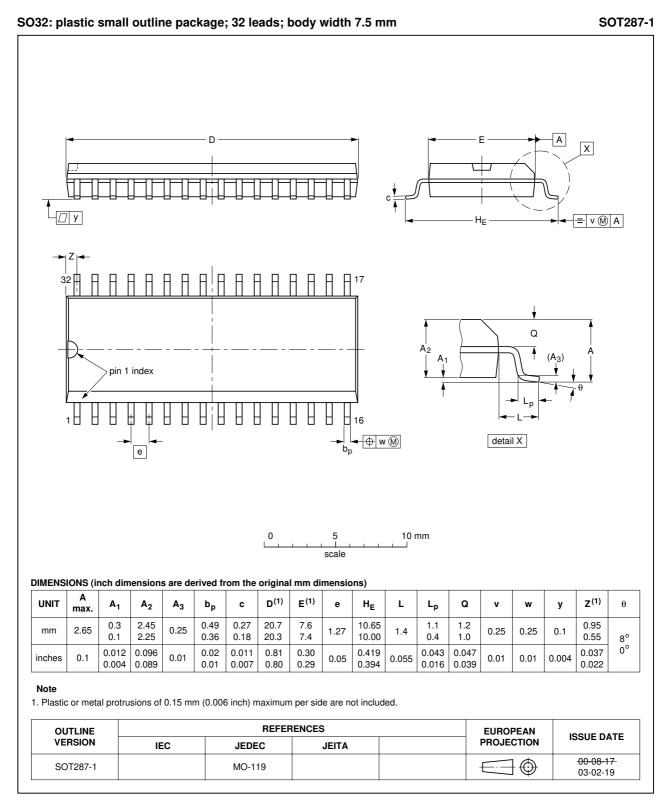
A typical application diagram with the TFA9815 supplied from an asymmetrical supply is shown in Figure 12.

TFA9815_1 Preliminary data sheet

NXP Semiconductors

TFA9815 Audio amplifier 2 x 17 W

13.8 Typical application: bill of materials


Table ⁻	іч. туріса	al application: bill of	materials	
Item	Quantity	Reference	Part	Footprint
1	2	C1, C2.	220 mF/35 V	CE09-02R
2	5	C3, C4, C5, C31, C33.	100 nF/50 V	SMD 0805 X7R
3	2	C16, C17.	1 mF/50 V	SMD 1206 X7R
4	4	C6, C7, C18, C26	1 mF/25 V	МКТ
5	4	C8, C10, C21, C24.	220 pF/25 V	SMD 0402 NP0
6	4	C9, C14, C19, C25.	220 nF/25 V	SMD 0805 X7R
7	1	C11	47 pF/25 V	SMD 0402 NP0
8	4	C12, C13, C20, C23.	680 nF/25 V	МКТ
9	1	C22.	68 pF/25 V	SMD 0402 NP0
10	3	J1, J3, J6.	CON2	2 pins terminal
11	2	J2, J5.	CINCH	CINCH
12	2	J4, J7	Jumper	Closed on demo board only
13	2	L1, L2	BEAD	SMD 1206 Würth Elektronik DC < 0.5 Ω 10 MHz > 80 Ω
14	1	R35	200 kΩ / 0.1 W / 5 %	SMD 0603
15	1	C15	4.7 μF / 16 V	
16	4	L3, L4, L5, L6.	22 μΗ	8RDY TOKO A7040HN-220M, 11RHBP TOKO A7503CY-220M or Sagami 7311NA-220M
17	5	R3	10 / 0.25 W / 5 %	SMD 1206
18	4	R5, R14, R17, R26.	100 kΩ / 0.1 W / 1 % for 20 dB 200 k / 0.1 W / 1 % for 26 dB	SMD 0603
19	12	R6, R7, R10, R11, R18, R19, R22, R23, R31, R32, R33, R34.	10 kΩ / 0.1 W / 1 %	SMD 0603
20	1	R100	22 Ω / 5 % / 0.1 W	SMD 0603
21	1	SW1	SC 1X1	Secme 090320901
	1	U1	TFA9815T	SOT287-1 (SO32) NXP Semiconductors

Remark: The power supply requires at least a 1000 μ F capacitor.

Table 15. Snubber network: bill of materials

Item	Quantity	Reference	Part	Footprint
1	4	C27, C28, C29, C30	470 pF, 25 V	SMD 0805 X7R
2	4	R27, R28, R29, R30	10 / 0.25 W / 5 %	SMD 1206

14. Package outline

Fig 13. Package outline SOT287-1 (SO32)

15. Revision history

Table 16. Revision hist	Revision history						
Document ID	Release date	Data sheet status	Change notice	Supersedes			
TFA9815_1	20081216	Preliminary data sheet	-	-			

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com