imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

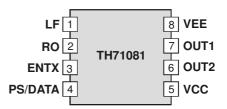
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- □ Fully integrated, PLL-stabilized VCO
- □ Flexible frequency range from 800 MHz to 930 MHz
- ASK achieved by on/off keying of internal power amplifier
- □ FM possible with external varactor
- □ Wide power supply range from 2.2 V to 5.5 V
- □ High over-all frequency accuracy
- Very low standby current


- Adjustable output power range from
 -15 dBm to +1 dBm
- Adjustable current consumption from 6.2 mA to 12.5 mA
- Differential output well-suited for loop antenna
- Conforms to EN 300 220 and similar standard

Ordering InformationPart No.Temperature RangePackageTH71081-40 C° to 85 °CSOIC8

Application Examples

- □ Keyless car and central locking
- □ Low-power telemetry
- □ Alarm and security systems
- General digital data transmission
- General analog audio signal transmission
- Local oscillator signal generation

Pin Description

General Description

The TH71081 ASK transmitter IC is designed for applications in the European 868MHz industrialscientific-medical (ISM) band, according to the EN 300 220 telecommunications standard. It can also be used for any other system with carrier frequencies ranging from 800 MHz to 930 MHz (e.g. for applications in the US 915MHz ISM band). The transmitter's carrier frequency f_c is determined by the frequency of the reference crystal f_{ref} that is used. The integrated PLL synthesizer ensures that each RF value, ranging from 800 MHz to 930 MHz, can be achieved by using a crystal with reference frequency according to: $f_{ref} = f_c/N$, where N = 32 is the PLL feedback divider ratio.

Theory of Operation

General

As depicted in Fig.1, the TH71081 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump. An external loop filter at pin LF determines the dynamic behaviour of the PLL and suppresses reference spurious signals.

The VCO's output signal feeds the power amplifier (PA). RF signal power P_o can be adjusted in six steps from P_o = -15 dBm to +1 dBm either by changing the value of resistor R₁ or by varying the voltage V_{PS} at pin PS/DATA. The open-collector differential output (OUT1, OUT2) can be used to either directly drive a loop antenna or to be converted to a single-ended impedance by means of a balanced-to-unbalanced (balun) transformer. For maximum available output power, the differential output should be matched to a load of approx. 1 k Ω .

Bandgap biasing ensures stable operation of the IC at a power supply range of 2.2 V to 5.5 V.

ASK Modulation

The TH71081 can be ASK-modulated by applying data directly at pin PS. This turns the PA on and off and therefore leads to an ASK signal at the output.

LO Source

Many applications require a stable RF source. For this purpose, the TH71081 can be used without modulation as an easy-to-use, PLL-stabilized, continuous wave (CW) generator.

Frequency Modulation (FM)

For FM operation an external varactor is required. It simply acts as a pulling capacitor connected in series to the crystal. Then the analog modulation signal, applied through a series resistor, directly modulates the XOSC.

Mode Control Logic

The mode control logic allows two different modes of operation as listed in the following table. The mode control pin ENTX is pulled-down internally. This guarantees that the whole circuit is shut down if this pin is left floating.

ENTX	Mode	Description
0	TX disabled	whole circuit in standby
1	TX enable	TX active

Table 1: Modes of operation

Block Diagram

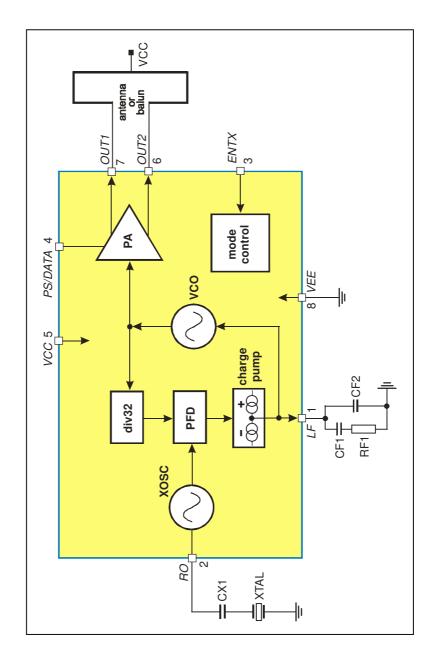


Fig. 1: TH71081 block diagram with external components

Pin Definition and Description

Pin No.	Name	I/O Type	Functional Schematic	Description
1	LF	analog I/O		connection to loop filter, charge pump output, VCO tuning input
2	RO	analog I/O		XOSC connection to XTAL, Colpitts type crystal oscillator
3	ENTX	input		mode control input, CMOS- compatible with internal pull-down
4	PS/DATA	analog I/O		power-select and ASK input, high-impedance comparator logic
5	VCC	supply		positive power supply
6	OUT2	output		differential power amplifier output, open collector
7	OUT1	output		differential power amplifier output, open collector
8	VEE	ground		negative power supply

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Мах	Unit
Supply voltage	V _{cc}		-0.3	7.0	V
Input voltage	V _{in}	ENTX pin	-0.3	VCC+0.3	V
Input current	l _{in}	ENTX pin	-1.0	1.0	mA
Storage temperature	T _{STG}		-40	150	°C
Electrostatic discharge	V _{ESD}	human body model, MIL STD 833D method 3015.7	-1.0	+1.0	kV

Normal Operating Conditions

Parameter	Symbol	Condition	Min	Мах	Unit
Supply voltage	V _{cc}		2.2	5.5	V
Operating temperature	Ta		-40	85	°C
XOSC frequency	f_{ref}	set by the crystal	25	29	MHz
VCO frequency	f _c	$f_c = 32 \bullet f_{ref}$	800	930	MHz

DC Characteristics

all parameters under normal operating conditions, unless otherwise stated; typical values at T_a = 23 °C and V_{cc} = 3 V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Standby current	I _{SBY}	ENTX=0		0.05	0.1	μA
Operating current	I _{cc}	ENTX=1, V _{PS} =1.1V	8	10	11	mA
Input HIGH voltage	V _{HIGH}	ENTX pin	0.7*V _{cc}		V _{cc} +0.3	V
Input LOW voltage	V _{LOW}	ENTX pin	-0.3		0.3*V _{cc}	V
Input current	l _{in}	ENTX=0	-1		1	μA
Pull down current	I _{pd}	ENTX=1	2	8	15	μΑ

AC Characteristics

all parameters under normal operating conditions, unless otherwise stated; typical values at $T_a = 23$ °C and $V_{cc} = 3$ V; ENTX = 1, $V_{PS} = 1.1V$, $f_c = 868.3$ MHz, test circuit shown in Fig. 2

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output power	Po			-2		dBm
FM deviation	Δf_{FM}	adjustable with varactor and $V_{\mbox{\scriptsize FM}}$		±6		kHz
Modulation frequency FM	f _{mod}			5		kHz
Data rate ASK	R _{ASK}	NRZ		40		kbit/s
Reference spurs	P_{ref}	@ $f_c \pm f_{ref}$		-44		dBm
Harmonic content	P_{harm}	@ 2f _c , 3f _c , 4f _c		-40		dBm
Spurious output signal	P_{off}	$V_{PS}\!\le 0.1V$		-60		dBm
Phase noise	PN	@ f _c ±500kHz		-87		dBc/Hz
VCO gain	K _{VCO}			300		MHz/V
Charge pump current	I _{CP}			±260		μA
Start-up time	t _{on}	from "all OFF" to any other mode			0.9	ms

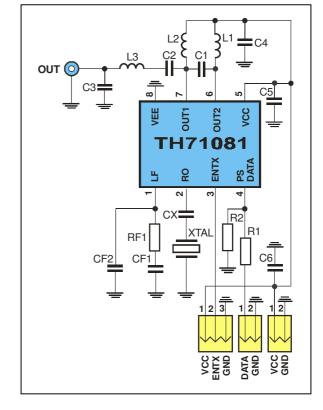
Output Power Selection

typical values at $T_a = 23$ °C and $V_{cc} = 3$ V: ENTX = 1, $f_c = 868.3$ MHz, test circuit shown in Fig. 2

	,		5			
R1 / kΩ	0	7.5	11	15	24	43
R2 / kΩ	8	4.7	4.7	4.7	4.7	4.7
V _{PS} / V	≥2	1.1	0.9	0.7	0.5	0.3
I _{cc} / mA	12.5	9.5	8.5	7.8	7.0	6.2
P _o / dBm	1	-2	-5	-8	-12	-15
P _{harm} / dBm	≤-40	≤-40	≤-40	≤-45	≤-45	≤-50

If the transmitter is operated at any supply voltage $V_{cc},$ the values for R_1 and R_2 can be calculated as allows:

$$R_1 = R_2 \bullet \left(\frac{V_{cc}}{V_{PS}} - 1\right)$$


Crystal Parameter

Parameter	Symbol	Condition	Min	Max	Unit
Crystal frequency	f _{crystal}	fundamental mode, AT	25	29	MHz
Load capacitance	Cload		10	15	pF
Static capacitance	C ₀			7	pF
Resonance resistance	R _m			40	Ω
Spurious response	a _{spur}			-10	dB

Test Circuit

Fig. 2: Test circuit for ASK with 50Ω matching network

Part	Size	Value	Tolerance	Description
CF1	0603	4.7 nF	±10%	loop filter capacitor
CF2	0603	56 pF	±10%	loop filter capacitor
СХ	0603	18 pF	±10%	XOSC capacitor
C1	0603	0.68 pF	±5%	impedance matching capacitor
C2	0603	33 pF	±5%	impedance matching capacitor
C3	0805	2.2 pF	±5%	impedance matching capacitor
C4	0603	330 pF	±10%	blocking capacitor
C5	0603	330 pF	±10%	blocking capacitor
C6	0805	33 nF	±10%	blocking capacitor
L1	0603	8.2 nH	±5%	impedance matching inductor
L2	0603	15 nH	±5%	impedance matching inductor
L3	0603	22 nH	±5%	impedance matching inductor
RF1	0603	1.0 kΩ	±10%	loop filter resistor
R1	0603	See output power selection table	±10%	ASK power-select resistor, not requirement at CW mode
R2	0603	See output power selection table	±10%	ASK or CW mode power-select resistor
XTAL	HC49/S	27.1344 MHz fundamental wave	±30ppm calibration ±30ppm temp.	crystal, C_{load} = 12 pF to 15 pF, $C_{0, \text{ max}}$ = 7 pF, $R_{\text{m, max}}$ = 40 Ω

Test circuit component list to Fig. 2

Package Information

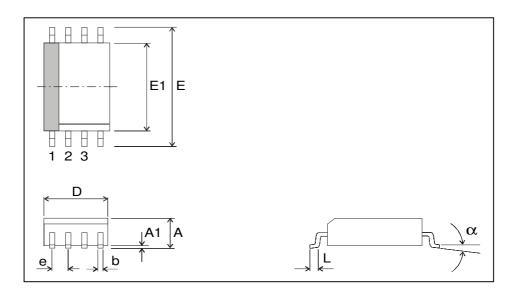


Fig. 6: SOIC8 (Small Outline Package)

all Dimension in mm, coplanarity < 0.1mm									
	D	E1	E	Α	A1	е	b	L	α
min	4.80	3.81	5.80	1.32	0.10	1.27	0.36	0.41	0°
max	4.98	3.99	6.20	1.72	0.25		0.46	1.27	8°
all Dime	all Dimension in inch, coplanarity < 0.004"								
min	0.189	0.150	0.2284	0.060	0.0040	0.05	0.014	0.016	0°
max	0.196	0.157	0.2440	0.068	0.0098		0.018	0.050	8°

Your Notes

Your Notes

Important Notice

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life sustaining equipment are specifically not recommended without additional processing by Melexis for each application.

The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.

For the latest version of this document. Go to our website at www.melexis.com

Or for additional information contact Melexis Direct:

Europe and Japan: Phone: +32 1361 1631 E-mail: sales_europe@melexis.com All other locations: Phone: +1 603 223 2362 E-mail: sales_usa@melexis.com

QS9000, VDA6.1 and ISO14001 Certified