

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

THBT15011, THBT20011, THBT27011

Tripolar overvoltage protection for telecom line

Features

- bidirectional crowbar protection between TIP and GND, RING and GND and between TIP and RING
- peak pulse current: I_{PP} = 30 A for 10/1000 µs surge
- holding current: I_H = 150 mA

Complies with Bellcore standard

- TR-NWT-001089-Core, (second level) with line series resistors:
 - 10/1000 μs, 1000 V
 - 2/10 μs, 2500 V (first level)
 - 2/10 μ s, 5000 V

Description

Dedicated to telecommunication equipment protection, these devices provide a triple bidirectional protection function.

They ensure the same protection capability with the same breakdown voltage both in longitudinal mode and transversal mode.

A particular attention has been given to the internal wire bonding. The "4-point" configuration ensures a reliable protection, eliminating overvoltages introduced by the parasitic inductances of the wiring (Ldi/dt), especially for very fast transient overvoltages.

Dynamic characteristics have been defined for several types of surges to meet the SLIC maximum ratings.

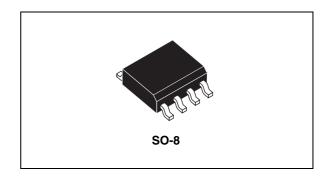
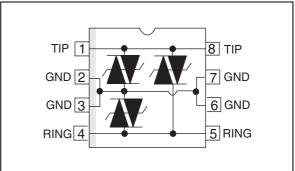



Figure 1. Schematic diagram

1 Characteristics

Table 1. Absolute maximum ratings $(T_{amb} = 25 \, ^{\circ}C)$

Symbol	Parameter	Value	Unit	
I _{PP}	Peak pulse current ^{(1) (2)}	10 / 1000 μs	30	Α
I _{TSM}	Non repetitive surge peak on-state current (F = 50 Hz)	$t_p = 10 \text{ ms}$ t = 1 s	8 3.5	Α
Tstg Tj	Storage temperature range Maximum junction temperature	- 40 to + 150 150	°C	
T _L	Maximum lead temperature for soldering du	ring 10s	260	°C

^{1.} For pulse waveform see Figure 2

Figure 2. Pulse waveform

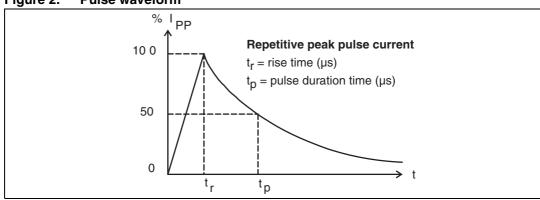


Figure 3. Surge peak current versus overload duration

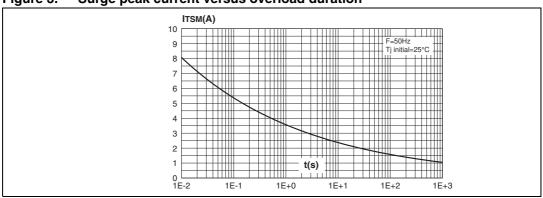


Table 2. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient	170	°C/W

2/11 Doc ID 3767 Rev 9

^{2.} See Figure 7: Test circuit 4 for I_{PP} parameter

Table 3. Electrical characteristics ($T_{amb} = 25$ °C)

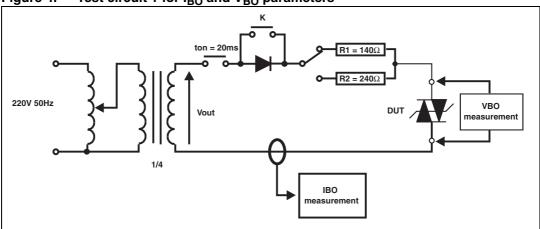
Symbol	Parameter
V_{RM}	Stand-off voltage
I_{RM}	Leakage current at stand-off voltage
V_{R}	Continuos reverse voltage
V_{BR}	Breakdown voltage
V _{BO}	Breakover voltage
I _H	Holding current
I _{BO}	Breakover current
V _F	Forward voltage drop
I _{PP}	Peak pulse current
С	Capacitance

Table 4. Static parameters

	I _{RM} @	V _{RM}	I _R ⁽¹⁾ (@ V _R	V	30 ⁽²⁾ @ I	30	I _H ⁽³⁾	C ⁽⁴⁾
Order code	max.		max.		max.	min.	max.	min.	max.
	μΑ	V	μΑ	V	V	V	mA	mA	pF
THBT15011D	5	135	50	150	210	50	400	150	80
THBT20011D	5	180	50	200	290	50	400	150	80
THBT27011D	5	240	50	270	380	50	400	150	80

- 1. I_R measured at V_R guarantee V_{BR} min $\geq V_R$
- 2. Measured at 50 Hz (1 cycle) See Figure 4: Test circuit 1 for IBO and VBO parameters.
- 3. See Figure 5: Test circuit 2 for dynamic IH parameter.
- 4. $V_R = 1 V$, F = 1 MHz.

 Table 5.
 Dynamic breakover voltages (transversal mode)


Туре	Symbol		Max	Unit			
	.,	10/700 μs	1.5 kV	$R_p = 10 \Omega$	I _{PP} = 30 A	190	
THBT15011D	V_{BO}	1.2/50 μs 2/10μs	1.5 kV 2.5 kV	$R_p = 10 \Omega$ $R_p = 62 \Omega$	I _{PP} = 30 A I _{PP} = 38 A	190 200	V
		10/700 µs	1.5 kV	$R_p = 10 \Omega$	I _{PP} = 30 A	270	
THBT20011D	V_{BO}	1.2/50 µs	1.5 kV	$R_p = 10 \Omega$	I _{PP} = 30 A	270	V
		2/10 µs	2.5 kV	$R_p = 62 \Omega$	$I_{PP} = 38 A$	280	
		10/700 μs	1.5 kV	$R_p = 10 \Omega$	$I_{PP} = 30 A$	360	
THBT27011D	V_{BO}	1.2/50 μs 2/10 μs	1.5 kV 2.5 kV	$R_p = 10 \Omega$ $R_p = 62 \Omega$	I _{PP} = 30 A I _{PP} = 38 A	360 400	V
		2/10 μS	∠.3 KV	$D_p = 62 \Omega$	1PP = 30 A	400	

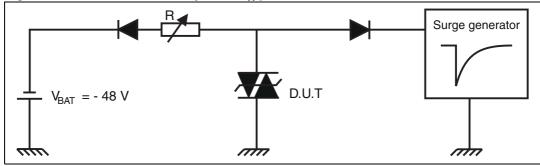
^{1.} See Figure 6: Test circuit 3 for V_{BO} parameters. R_p is the protection resistor located on the line card.

2 Test circuits

2.1 Test procedure for test circuit 1 for I_{BO} and V_{BO} parameters

Figure 4. Test circuit 1 for I_{BO} and V_{BO} parameters

Pulse test duration ($t_p = 20 \text{ ms}$):


- For bidirectional devices switch K is closed.
- For unidirectional devices switch K is open.

V_{OUT} selection:

- For device with V_{BO} < 200 V, V_{OUT} = 250 V_{RMS} , R1 = 140 Ω .
- For device with $V_{BO} \ge 200 \text{ V}$, $V_{OUT} = 480 \text{ V}_{RMS}$, $R2 = 240 \Omega$.

2.2 Test procedure for test circuit 2 for dynamic I_H parameter

Figure 5. Test circuit 2 for dynamic I_H parameter

This is a go no-go test, which can confirm the holding current (I_H) level.

Procedure

- 1. Adjust the current level at the I_H value by short circuiting the AK of the D.U.T.
- 2. Fire the D.U.T. with a surge current $I_{PP} = 10A$, $10/1000\mu s$.
- 3. The D.U.T. will come back off-state within 50 ms maximum.

4/11 Doc ID 3767 Rev 9

2.3 Test circuit 3 for V_{BO} parameters

Figure 6. Test circuit 3 for V_{BO} parameters

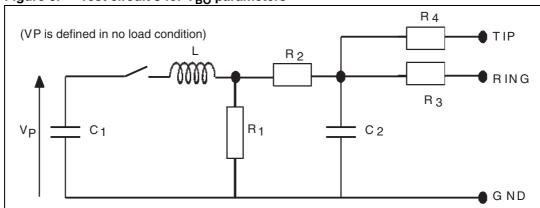


Table 6. Parameters for test crcuit 3 for selected pulse characteristics

Pulse	e (µs)	V _p	C ₁	C ₂	L	R ₁	R ₂	R ₃	R ₄	I _{PP}	Rp
t _r	t _p	(V)	(μ F)	(nF)	(µH)	(Ω)	(Ω)	(Ω)	(Ω)	(A)	(Ω)
10	700	1500	20	200	0	50	15	25	25	30	10
1.2	50	1500	1	33	0	76	13	25	25	30	10
2	10	2500	10	0	1.1	1.3	0	3	3	38	62

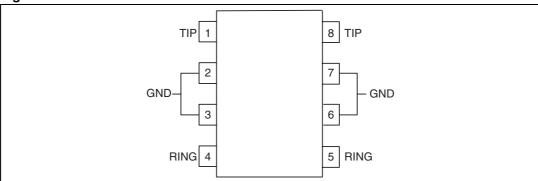
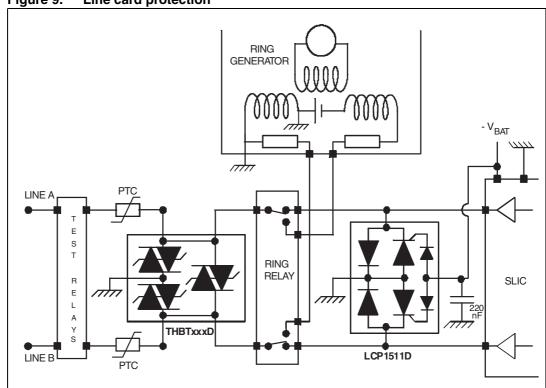

2.4 Test circuit 4 for I_{PP} parameter

Figure 7. Test circuit 4 for I_{PP} parameter

3 Application information

Figure 8. Device connections


Connect pins 2, 3, 6 and 7 to ground to guarantee a good surge current capability for long duration disturbances.

To take advantage of the "4-point" structure of the THBT, the TIP and RING lines have to cross the device. In this case, the device will eliminate the overvoltages generated by the parasitic inductances of the wiring (Ldi/dt), especially for very fast transients.

3.1 Application circuits

6/11

Figure 9. Line card protection

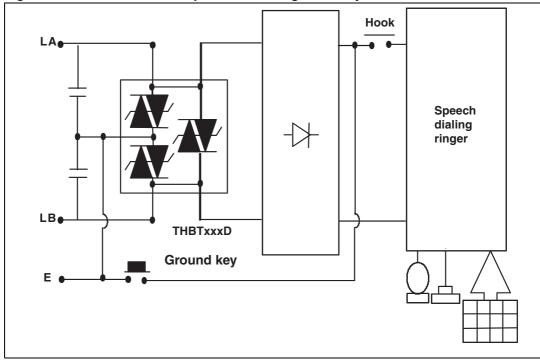
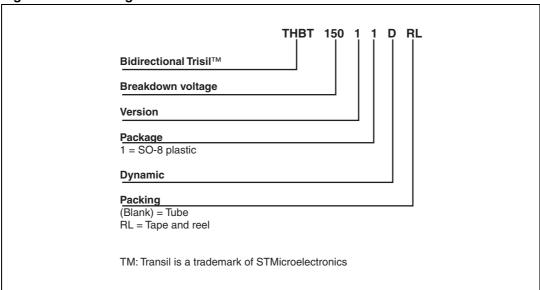



Figure 10. Protection for telephone set with ground key

4 Ordering information scheme

Figure 11. Ordering information scheme

5 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 7. SO-8 dimensions

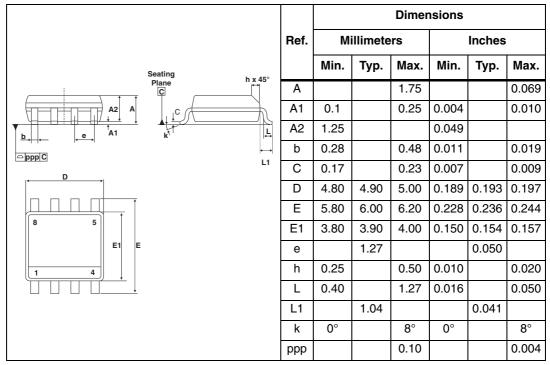
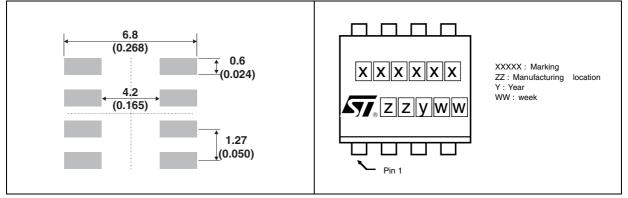



Figure 12. Footprint, dimensions in mm (inches)

Figure 13. Marking

6 Ordering information

 Table 8.
 Ordering information

Order code	Marking	Package	Weight	
THBT15011D	BT151D			
THBT20011D BT201D		SO-8	0.077 g	
THBT27011D	BT271D			

7 Revision history

Table 9. Document revision history

Date	Revision	Changes
Oct-2003	7A	Previous release
19-Feb-2008	8	Reformatted to current standards. Removed THBT16011D from <i>Table 4</i> and <i>Table 8</i> . Updated <i>Figure 4</i> , <i>Figure 5</i> , and <i>Figure 9</i> . Added ECOPACK paragraph in <i>Section 5</i> . Added <i>Figure 13: Marking</i> .
09-Dec-2010		Restructured for conformity with other products in this class. Updated trademark statement for Trisil in <i>Figure 11</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 3767 Rev 9