imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

To Our Customers

CEL continues to offer industry leading semiconductor products from Japan. We are pleased to add new communication products from THine Electronics to our product portfolio.

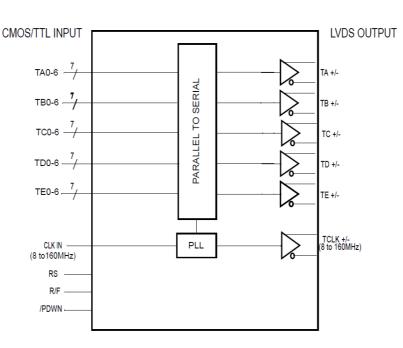
THC63LVD103D

160MHz 30bit COLOR LVDS TRANSMITTER

General Description

The THC63LVD103D transmitter is designed to support pixel data transmission between Host and Flat Panel Display from NTSC up to 1080p(60Hz).

The THC63LVD103D converts 35bits of CMOS/TTL data into four LVDS data streams. The transmitter can be programmed for rising edge or falling edge clock through a dedicated pin. At a transmit clock frequency of 160MHz, 30bits of RGB data and 5bits of timing and control data (HSYNC, VSYNC, DE, CONT1) are transmitted at an effective rate of 1120Mbps per LVDS channel.


Application

- •Medium and Small Size Panel
- ·Tablet PC / Notebook PC
- · Security Camera / Industrial Camera
- Multi Function Printer
- Industrial Equipment
- ·Medical Equipment Monitor

Features

- ·Compatible with TIA/EIA-644 LVDS Standard
- •7:1 LVDS Transmitter
- Operating Temperature Range : 0 to +70°C
- ·No Special Start-up Sequence Required
- Spread Spectrum Clocking Tolerant up to 100kHz Frequency Modulation and +/-2.5% Deviations.
- Wide Dot Clock Range: 8 to 160MHz Suited for TV Signal : NTSC(12.27MHz) - 1080p(148.5MHz) PC Signal : QVGA(8MHz) - WUXGA(154MHz)
- ·64pin TQFP Package
- ·1.2V to 3.3V LVCMOS/ inputs are supported.
- •LVDS swing is reducible as 200mV by RS-pin to reduce EMI and power consumption.
- $\cdot \text{PLL}$ requires no external components.
- · Power Down Mode.
- ·Input clock triggering edge is selectable by R/F-pin
- •EU RoHS Compliant.

Block Diagram

Pin Diagram

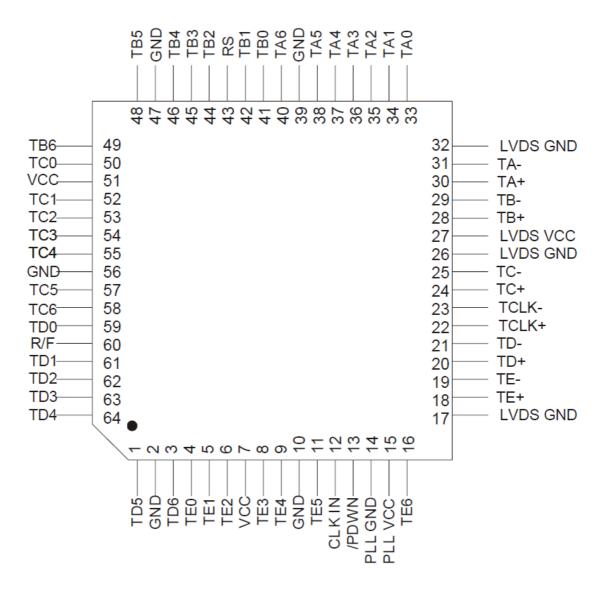


Figure 2. Pin Diagram

Pin Description

Pin Name	Pin #	Direction	Туре		Descriptio	n
TA+, TA-	30, 31					
TB+, TB-	28, 29					
TC+, TC-	24, 25			LVDS Data Ou	ıt	
TD+, TD-	20, 21	Output	LVDS			
TE+, TE-	18, 19					
TCLK+,	22, 23			LVDS Clock O	hit	
TCLK-				LVDS CIOCK O	ut	
TA0 ~ TA6	33, 34, 35, 36, 37, 38, 40					
$TB0 \sim TB6$	41, 42, 44, 45, 46, 48, 49					
TC0 ~ TC6	50, 52, 53, 54, 55, 57, 58			Pixel Data Inpu	ıt	
$TD0 \sim TD6$	59, 61, 62, 63, 64, 1, 3					
TE0 ~ TE6	4, 5, 6, 8, 9, 11, 16					
/PDWN	13			H : Normal Op		
				L : Power Dow		
RS	43			LVDS Swing N		elect See Fig.8, 9
		Input	LVCMOS	RS	LVDS	Small Swing
		mput	/TTL	RB	Swing	Input Support
				VCC	350mV	N/A
				$0.6 \sim 1.4 V$	350mV	RS=VREF
				GND	200mV	N/A
				VREF : is Inp	ut Reference V	/oltage
R/F	60			Input Clock Tr		Select
				H : Rising Edg		
				L : Falling Edg	e	
CLKIN	12			Input Clock		
VCC	51, 7					CMOS/TLL Inputs
	0.10.00.47.54			and Digital Cir		
GND	2, 10, 39, 47, 56					S/TTL Inputs and
	27	Power	-	Digital Circuit		0.45
LVDS VCC	27			Power Supply		
LVDS GND	17, 26, 32			Ground Pins fo		
PLL VCC	15			Power Supply		
PLL GND	14			Ground Supply	Pin for PLL C	Ircuitry.

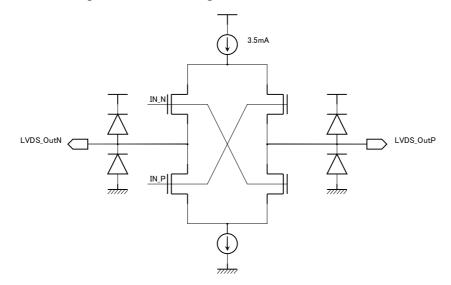
Table 1. Pin Description

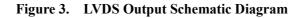
Absolute Maximum Ratings

Parameter	Min	Max	Unit
Supply Voltage (VCC)	-0.3	+4.0	V
LVCMOS/TTL Input Voltage	-0.3	VCC + 0.3	V
LVCMOS/TTL Output Voltage	-0.3	VCC + 0.3	V
LVDS Output Pin	-0.3	VCC + 0.3	V
Output Current			mA
Junction Temperature	-	+125	°C
Storage Temperature	-55	+150	°C
Reflow Peak Temperature	-	+260	°C
Reflow Peak Temperature Time	-	10	sec
Maximum Power Dissipation @+25°C	-	1.8	W

Table 2. Absolute Maximum Ratings

Recommended Operating Conditions

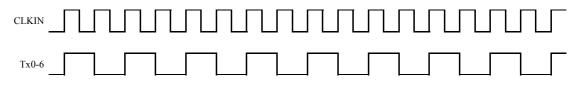

Symbol	Parameter	Min	Тур	Max	Unit
-	All Supply Voltage	3.0	3.3	3.6	V
Та	Operating Ambient Temperature	0	25	+70	°C
-	Clock Frequency	8	-	160	MHz


Table 3. Recommended Operating Conditions

"Absolute Maximum Ratings" are those values beyond which the safety of the device can not be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics Table4, 5, 6, 7" specify conditions for device operation.

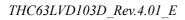
"Absolute Maximum Rating" value also includes behavior of overshooting and undershooting.

Equivalent LVDS Output Schematic Diagram


Power Consumption

Symbol	Parameter	Conditions	Тур*	Max	Unit
LVDS Transm	LVDS Transmitter	RL=100Ω, CL=5pF, f=85MHz, RS=VCC	69	75	mA
	Operating Current Worst Case Pattern	RL=100Ω, CL=5pF, f=135MHz, RS=VCC	87	93	mA
I _{TCCW}	(Fig.5)	RL=100Ω, CL=5pF, f=160MHz, RS=VCC	97	104	mA
	LVDS Transmitter	RL=100Ω, CL=5pF, f=85MHz, RS=GND	55	61	mA
	Operating Current Worst Case Pattern	RL=100Ω, CL=5pF, f=160MHz, RS=GND	73	79	mA
	(Fig.5)	RL=100Ω, CL=5pF, f=160MHz, RS=GND	83	89	mA
I _{TCCS}	LVDS Transmitter Power Down Current	/PDWN=L, All Inputs=L or H	-	10	μΑ

*Typ values are at the conditions of VCC=3.3V and Ta = +25°C


Table 4. Power Consumption

Worst Case Pattern

x=A,B,C,D

Figure 4. Worst Case Pattern

Electrical Characteristics

LVCMOS/TTL DC Specifications

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур*	Max	Unit
V _{IH}	High Level Input Voltage	RS=VCC or GND	2.0	-	VCC	V
V _{IL}	Low Level Input Voltage	RS=VCC or GND	GND	-	0.8	V
V _{DDQ} ¹	Small Swing Voltage		1.2	-	2.8	V
V _{REF}	Input Reference Voltage	Small Swing (RS=V _{DDQ} /2)	-	$V_{DDQ}/2$	-	
${ m V_{SH}}^2$	Small Swing High Level Input Voltage	$V_{REF=}V_{DDQ}/2$	$V_{DDQ}/2$ +100mV	-	-	V
V_{SL}^{2}	Small Swing Low Level Input Voltage	$V_{REF=} V_{DDQ}/2$	-	-	V _{DDQ} /2 -100mV	V
I _{INC}	Input Current	$GND \le V_{IN} \le VCC$	-	-	±10	μΑ

*Typ values are at the conditions of VCC=3.3V and $Ta = +25^{\circ}C$

Notes : ${}^{1}V_{DDQ}$ voltage defines the max voltage of small swing inputs at RS=VREF. It is not an actual input voltage.

² Small swing signals are applied to TA0-6, TB0-6, TC0-6, TD0-6 and CLKIN.

Table 5. LV-CMOS/TTL DC Specifications

LVDS Transmitter DC Specifications

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Co	nditions	Min	Тур*	Max	Unit
VOD Differential Output Voltage		RL=100Ω Normal swing RS=VCC		250	350	450	mV
VOD	Differential Output Voltage	KL-10032	Reduced swing RS=GND	100	200	300	mV
ΔVOD	Change in VOD between complementary output states			-	-	35	mV
VOC	Common Mode Voltage	RL=100Ω		1.125	1.25	1.375	V
ΔVOC	Change in VOC between complementary output states			-	-	35	mV
I _{OS}	Output Short Circuit Current	V_{OUT} =GND, RL=100 Ω		-	-	-24	mA
I _{OZ}	Output TRI-STATE Current	/PDWN=GND, V _{OUT} =GND to VCC		-	-	±10	μΑ

*Typ values are at the conditions of VCC=3.3V and Ta = +25°C

Table 6. LVDS Transmitter DC Specifications

Over recommended operating supply and temperature range unless otherwise specified							
Symbol	Parameter	Min	Тур	Max	Unit		
t _{TCIT}	CLK IN Transition Time	-	-	5.0	ns		
t _{TCP}	CLK IN Period	6.25	Т	125	ns		
t _{TCH}	CLK IN High Time	0.35T	0.5T	0.65T	ns		
t _{TCL}	CLK IN Low Time	0.35T	0.5T	0.65T	ns		
t _{TCD}	CLK IN to TCLK+/- Delay	-	3T	-	ns		
t _{TS}	LVCMOS/TTL Data Setup to CLK IN	2.0	-	-	ns		
$t_{\rm TH}$	LVCMOS/TTL Data Hold from CLK IN	0.0	-	-	ns		
t _{LVT}	LVDS Transition Time	-	0.6	1.5	ns		
t _{TOP1}	Output Data Position0 (T=6.25ns ~ 20ns)	-0.15	0.0	+0.15	ns		
t _{Top0}	Output Data Position1 (T=6.25ns ~ 20ns)	T/7-0.15	T/7	T/7+0.15	ns		
t _{Top6}	Output Data Position2 (T=6.25ns ~ 20ns)	2T/7-0.15	2T/7	2T/7+0.15	ns		
t _{Top5}	Output Data Position3 (T=6.25ns ~ 20ns)	3T/7-0.15	3T/7	3T/7+0.15	ns		
t _{Top4}	Output Data Position4 (T=6.25ns ~ 20ns)	4T/7-0.15	4T/7	4T/7+0.15	ns		
t _{Top3}	Output Data Position5 (T=6.25ns ~ 20ns)	5T/7-0.15	5T/7	5T/7+0.15	ns		
t _{Top2}	Output Data Position6 (T=6.25ns ~ 20ns)	6T/7-0.15	6T/7	6T/7+0.15	ns		
t _{TPLL}	Phase Lock Loop Set	-	-	10.0	ms		

LVCMOS/TTL & LVDS Transmitter AC Specifications

*Typ values are at the conditions of VCC=3.3V and Ta = +25°C

Table 7. LVCMOS/TTL & LVDS Transmitter AC Specifications

LVCMOS/TTL Input

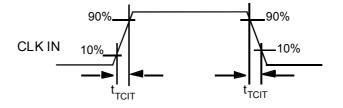
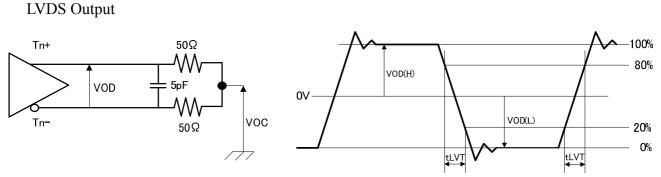
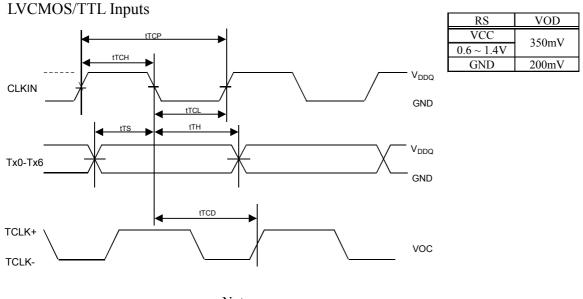
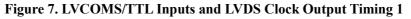
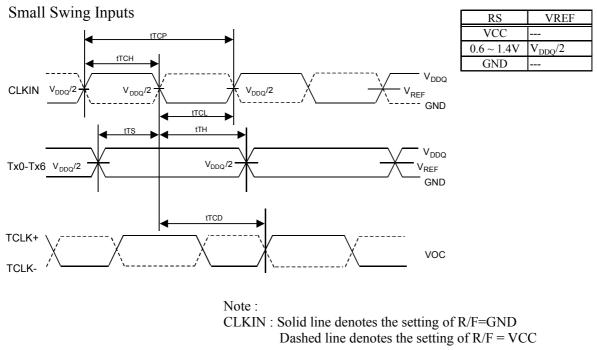



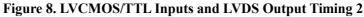
Figure 5. CLKIN Transmission Time



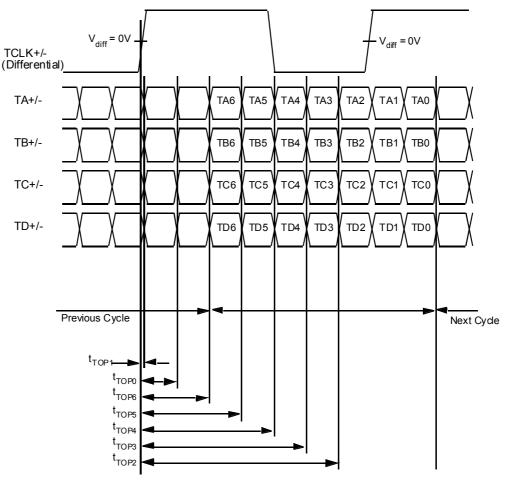
LVDS Output Load

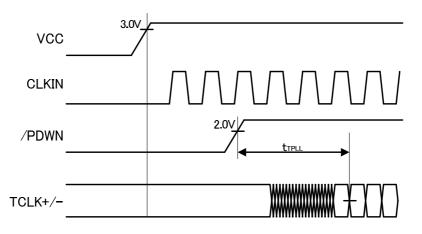




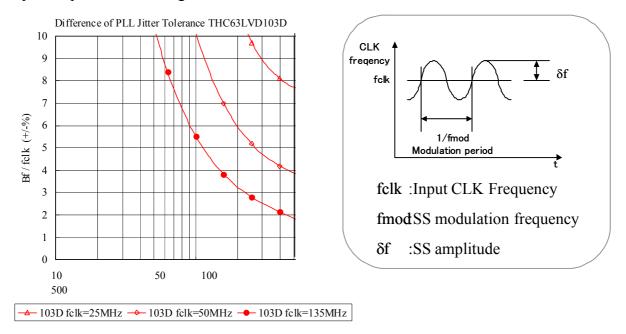

AC Timing Diagrams

Note : CLKIN : Solis line denotes the setting of R/F=GND Dashed line denotes the setting of R/F = VCC





LVDS Output Data Position



Phase Lock Loop Set Time

Spread Spectrum Clocking Tolerant

Figure 11. Spread Spectrum Clocking Tolerant

The graph indicates the range that the IC works normally under SS clock input operation. The results are measured with a typical sample on condition of +25C° and 3.3V, therefore these

The results are measured with a typical sample on condition of +25C° and 3.3V, therefore these values are for reference and do not guarantee the performance of a product under other circumstance.

LVDS Data Timing Diagram

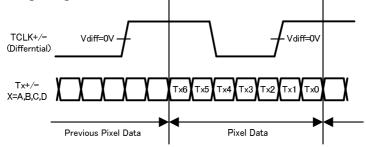


Figure 12. LVDS Data Timing Diagram

THC63LVD103D Pixel Data Mapping for JEIDA Format (6bit, 8bit and 10bit Application)

	6bit	8bit	10bit
TA0	R4	R4	R4
TA1	R5	R5	R5
TA2	R6	R6	R6
TA3	R7	R7	R7
TA4	R8	R8	R8
TA5	R9	R9	R9
TA6	G4	G4	G4
TB0	G5	G5	G5
TB1	G6	G6	G6
TB2	G7	G7	G7
TB3	G8	G8	G8
TB4	G9	G9	G9
TB5	B4	B4	B4
TB6	B5	B5	В5
TC0	B6	B6	B6
TC1	B7	B7	B7
TC2	B8	B8	B8
TC3	B9	B9	В9
TC4	Hsync	Hsync	Hsync
TC5	Vsync	Vsync	Vsync
TC6	DE	DE	DE
TD0	-	R2	R2
TD1	-	R3	R3
TD2	-	G2	G2
TD3	-	G3	G3
TD4	-	B2	B2
TD5	-	B3	B3
TD6	-	N/A	N/A
TE0	-	-	R0
TE1	-	-	R1
TE2	-	-	G0
TE3	-	_	G1
		-	B0
TE4	-	-	
TE4 TE5	-	-	BI

Note : Use TA to TC channels and open TD channel for 6bit application. Use TA to TD channels and open TE channel for 8bit application.

Table 8. Data Mapping for JEIDA Format

	6bit	8bit	10bit
TA0	R0	R0	R0
TA1	R1	R1	R1
TA2	R2	R2	R2
TA3	R3	R3	R3
TA4	R4	R4	R4
TA5	R5	R5	R5
TA6	G0	G0	G0
TB0	Gl	G1	G1
TB1	G2	G2	G2
TB2	G3	G3	G3
TB3	G4	G4	G4
TB4	G5	G5	G5
TB5	B0	B0	B0
TB6	B1	B1	B1
TC0	B2	B2	B2
TC1	В3	B3	B3
TC2	B4	B4	B4
TC3	B5	B5	B5
TC4	Hsync	Hsync	Hsync
TC5	Vsync	Vsync	Vsync
TC6	DE	DE	DE
TD0	-	R6	R6
TD1	-	R7	R7
TD2	-	G6	G6
TD3	-	G7	G7
TD4	-	B6	B6
TD5	-	B7	B7
TD6	-	N/A	N/A
TE0	-	-	R8
TE1	-	-	R9
TE2	-	-	G8
TE3	-	-	G9
TE4	-	-	B8
TE5	-	-	B9
TE6	_	-	N/A

THC63LVD103D Pixel Data Mapping for VESA Format (6bit, 8bit and 10bit Application)

Note : Use TA to TC channels and open TD channel for 6bit application. Use TA to TD channels and open TE channel for 8bit application.

 Table 9. Data Mapping for VESA Format

Normal Connection with JEIDA Format

Example

THC63LVD103D : Falling Edge / Normal Swing

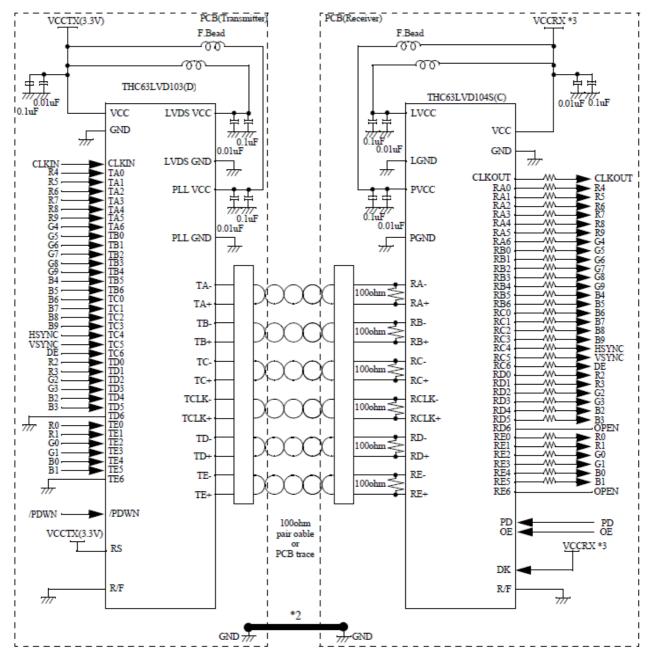


Figure 13. Typical Connection Diagram

Notes

- Cable Connection and Disconnection Do not connect and disconnect the LVDS cable, when the power is supplied to the system.
- 2) GND Connection

Connect each GND of the PCB which THC63LVDM83D and LVDS-Rx on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.

3) Multi Drop Connection

Multi drop connection is not recommended.

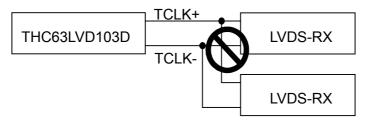
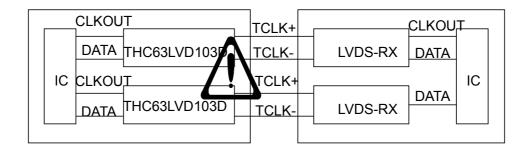



Figure 14. Multi Drop Connection

4) Asynchronous use

Asynchronous using such as following systems is not recommended.

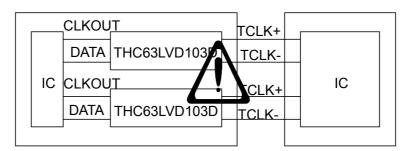


Figure 15. Asynchronous Use

Package

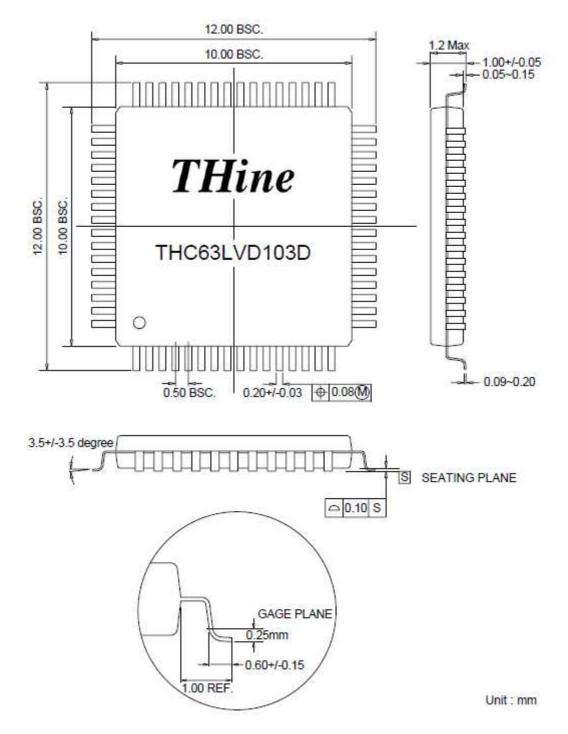


Figure 16. Package Diagram

Reference Land Pattern

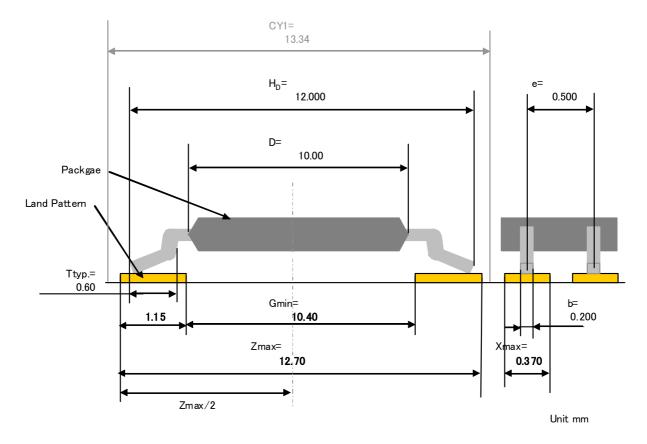


Figure 17. Reference of Land Pattern

The recommendation mounting method of THine device is reflow soldering. The reference pattern is using the calculation result on condition of reflow soldering.

Notes

This land pattern design is a calculated value based on JEITA ET-7501.

Please take into consideration in an actual substrate design about enough the ease of mounting, the intensity of connection, the density of mounting, and the solder paste used, etc... The optimal land pattern size changes with these parameters. Please use the value shown by the land pattern as reference data.

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately.
- 3. This material contains our copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited.
- 4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. This product is presumed to be used for general electric equipment, not for the applications which require very high reliability (including medical equipment directly concerning people's life, aerospace equipment, or nuclear control equipment). Also, when using this product for the equipment concerned with the control and safety of the transportation means, the traffic signal equipment, or various Types of safety equipment, please do it after applying appropriate measures to the product.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law.

THine Electronics, Inc. sales@thine.co.jp